如何为预构建的 ReAct 代理添加自定义系统提示¶
本教程将展示如何为预构建的 ReAct 代理添加自定义系统提示。有关如何开始使用预构建的 ReAct 代理,请参阅本教程。
你可以通过将字符串传递给 prompt
参数来添加自定义系统提示。
安装设置¶
首先,让我们安装所需的软件包并设置我们的 API 密钥。
import getpass
import os
def _set_env(var: str):
if not os.environ.get(var):
os.environ[var] = getpass.getpass(f"{var}: ")
_set_env("OPENAI_API_KEY")
为 LangGraph 开发设置 LangSmith
注册 LangSmith 以快速发现问题并提升你的 LangGraph 项目的性能。LangSmith 允许你使用跟踪数据来调试、测试和监控使用 LangGraph 构建的大语言模型应用程序 — 点击 此处 了解更多关于如何开始使用的信息。
代码¶
# First we initialize the model we want to use.
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4o", temperature=0)
# For this tutorial we will use custom tool that returns pre-defined values for weather in two cities (NYC & SF)
from typing import Literal
from langchain_core.tools import tool
@tool
def get_weather(city: Literal["nyc", "sf"]):
"""Use this to get weather information."""
if city == "nyc":
return "It might be cloudy in nyc"
elif city == "sf":
return "It's always sunny in sf"
else:
raise AssertionError("Unknown city")
tools = [get_weather]
# We can add our system prompt here
prompt = "Respond in Italian"
# Define the graph
from langgraph.prebuilt import create_react_agent
graph = create_react_agent(model, tools=tools, prompt=prompt)
API Reference: tool
使用方法¶
def print_stream(stream):
for s in stream:
message = s["messages"][-1]
if isinstance(message, tuple):
print(message)
else:
message.pretty_print()
inputs = {"messages": [("user", "What's the weather in NYC?")]}
print_stream(graph.stream(inputs, stream_mode="values"))
================================[1m Human Message [0m=================================
What's the weather in NYC?
==================================[1m Ai Message [0m==================================
Tool Calls:
get_weather (call_b02uzBRrIm2uciJa8zDXCDxT)
Call ID: call_b02uzBRrIm2uciJa8zDXCDxT
Args:
city: nyc
=================================[1m Tool Message [0m=================================
Name: get_weather
It might be cloudy in nyc
==================================[1m Ai Message [0m==================================
A New York potrebbe essere nuvoloso.