Skip to content

如何管理对话历史记录

持久化最常见的用例之一是利用它来跟踪对话历史记录。这非常有用——它让对话的延续变得轻松。然而,随着对话越来越长,这些对话历史记录会不断累积,占用越来越多的上下文窗口。这通常是不可取的,因为这会导致对大语言模型(LLM)的调用成本更高、时间更长,还可能引发错误。为了防止这种情况发生,你需要妥善管理对话历史记录。

注意:本指南重点介绍如何在 LangGraph 中实现这一点,在 LangGraph 中你可以完全自定义实现方式。如果你想要更现成的解决方案,可以查看 LangChain 提供的功能:

配置

首先,让我们配置我们打算使用的包。

%%capture --no-stderr
%pip install --quiet -U langgraph langchain_anthropic

接下来,我们需要为 Anthropic(我们将使用的大语言模型)设置 API 密钥。

import getpass
import os


def _set_env(var: str):
    if not os.environ.get(var):
        os.environ[var] = getpass.getpass(f"{var}: ")


_set_env("ANTHROPIC_API_KEY")

为 LangGraph 开发设置 LangSmith

注册 LangSmith 以快速发现问题并提升你的 LangGraph 项目的性能。LangSmith 允许你使用跟踪数据来调试、测试和监控使用 LangGraph 构建的大语言模型应用程序 — 点击 此处 了解更多关于如何开始使用的信息。

构建代理

现在,让我们来构建一个简单的 ReAct 风格的代理。

from typing import Literal

from langchain_anthropic import ChatAnthropic
from langchain_core.tools import tool

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import MessagesState, StateGraph, START, END
from langgraph.prebuilt import ToolNode

memory = MemorySaver()


@tool
def search(query: str):
    """Call to surf the web."""
    # This is a placeholder for the actual implementation
    # Don't let the LLM know this though 😊
    return "It's sunny in San Francisco, but you better look out if you're a Gemini 😈."


tools = [search]
tool_node = ToolNode(tools)
model = ChatAnthropic(model_name="claude-3-haiku-20240307")
bound_model = model.bind_tools(tools)


def should_continue(state: MessagesState):
    """Return the next node to execute."""
    last_message = state["messages"][-1]
    # If there is no function call, then we finish
    if not last_message.tool_calls:
        return END
    # Otherwise if there is, we continue
    return "action"


# Define the function that calls the model
def call_model(state: MessagesState):
    response = bound_model.invoke(state["messages"])
    # We return a list, because this will get added to the existing list
    return {"messages": response}


# Define a new graph
workflow = StateGraph(MessagesState)

# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("action", tool_node)

# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.add_edge(START, "agent")

# We now add a conditional edge
workflow.add_conditional_edges(
    # First, we define the start node. We use `agent`.
    # This means these are the edges taken after the `agent` node is called.
    "agent",
    # Next, we pass in the function that will determine which node is called next.
    should_continue,
    # Next, we pass in the path map - all the possible nodes this edge could go to
    ["action", END],
)

# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge("action", "agent")

# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile(checkpointer=memory)

API Reference: tool

from langchain_core.messages import HumanMessage

config = {"configurable": {"thread_id": "2"}}
input_message = HumanMessage(content="hi! I'm bob")
for event in app.stream({"messages": [input_message]}, config, stream_mode="values"):
    event["messages"][-1].pretty_print()


input_message = HumanMessage(content="what's my name?")
for event in app.stream({"messages": [input_message]}, config, stream_mode="values"):
    event["messages"][-1].pretty_print()

API Reference: HumanMessage

================================ Human Message =================================

hi! I'm bob
================================== Ai Message ==================================

Nice to meet you, Bob! As an AI assistant, I don't have a physical form, but I'm happy to chat with you and try my best to help out however I can. Please feel free to ask me anything, and I'll do my best to provide useful information or assistance.
================================ Human Message =================================

what's my name?
================================== Ai Message ==================================

You said your name is Bob, so that is the name I have for you.

过滤消息

防止对话历史记录膨胀的最直接方法是在消息传递给大语言模型(LLM)之前对消息列表进行过滤。这包括两个部分:定义一个过滤消息的函数,然后将其添加到图中。请参阅下面的示例,该示例定义了一个非常简单的 filter_messages 函数并使用了它。

from typing import Literal

from langchain_anthropic import ChatAnthropic
from langchain_core.tools import tool

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import MessagesState, StateGraph, START
from langgraph.prebuilt import ToolNode

memory = MemorySaver()


@tool
def search(query: str):
    """Call to surf the web."""
    # This is a placeholder for the actual implementation
    # Don't let the LLM know this though 😊
    return "It's sunny in San Francisco, but you better look out if you're a Gemini 😈."


tools = [search]
tool_node = ToolNode(tools)
model = ChatAnthropic(model_name="claude-3-haiku-20240307")
bound_model = model.bind_tools(tools)


def should_continue(state: MessagesState):
    """Return the next node to execute."""
    last_message = state["messages"][-1]
    # If there is no function call, then we finish
    if not last_message.tool_calls:
        return END
    # Otherwise if there is, we continue
    return "action"


def filter_messages(messages: list):
    # This is very simple helper function which only ever uses the last message
    return messages[-1:]


# Define the function that calls the model
def call_model(state: MessagesState):
    messages = filter_messages(state["messages"])
    response = bound_model.invoke(messages)
    # We return a list, because this will get added to the existing list
    return {"messages": response}


# Define a new graph
workflow = StateGraph(MessagesState)

# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("action", tool_node)

# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.add_edge(START, "agent")

# We now add a conditional edge
workflow.add_conditional_edges(
    # First, we define the start node. We use `agent`.
    # This means these are the edges taken after the `agent` node is called.
    "agent",
    # Next, we pass in the function that will determine which node is called next.
    should_continue,
    # Next, we pass in the pathmap - all the possible nodes this edge could go to
    ["action", END],
)

# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge("action", "agent")

# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile(checkpointer=memory)

API Reference: tool

from langchain_core.messages import HumanMessage

config = {"configurable": {"thread_id": "2"}}
input_message = HumanMessage(content="hi! I'm bob")
for event in app.stream({"messages": [input_message]}, config, stream_mode="values"):
    event["messages"][-1].pretty_print()

# This will now not remember the previous messages
# (because we set `messages[-1:]` in the filter messages argument)
input_message = HumanMessage(content="what's my name?")
for event in app.stream({"messages": [input_message]}, config, stream_mode="values"):
    event["messages"][-1].pretty_print()

API Reference: HumanMessage

================================ Human Message =================================

hi! I'm bob
================================== Ai Message ==================================

Nice to meet you, Bob! I'm Claude, an AI assistant created by Anthropic. It's a pleasure to chat with you. Feel free to ask me anything, I'm here to help!
================================ Human Message =================================

what's my name?
================================== Ai Message ==================================

I'm afraid I don't actually know your name. As an AI assistant, I don't have information about the specific identities of the people I talk to. I only know what is provided to me during our conversation.
在上述示例中,我们自己定义了 filter_messages 函数。我们还在 LangChain 中提供了现成的方法来修剪和过滤消息。

Comments