如何管理对话历史¶
持久化最常见的用途之一是用于跟踪对话历史。这很好,因为它使得继续对话变得容易。然而,随着对话越来越长,对话历史也会积累起来,占用越来越多的上下文窗口。这通常不是我们希望看到的情况,因为它会导致对LLM的调用变得更昂贵且耗时更长,甚至可能导致调用失败。为了防止这种情况发生,你需要管理对话历史。
注意:本指南专注于如何在LangGraph中实现这一点,你可以在其中完全自定义此过程。如果你想要一个现成的解决方案,可以查看LangChain提供的功能:
设置¶
首先,让我们设置将要使用的包
接下来,我们需要为Anthropic(我们将使用的大型语言模型)设置API密钥
import getpass
import os
def _set_env(var: str):
if not os.environ.get(var):
os.environ[var] = getpass.getpass(f"{var}: ")
_set_env("ANTHROPIC_API_KEY")
使用LangSmith进行LangGraph开发设置
注册LangSmith,可以快速发现并解决您的LangGraph项目中的问题,提高项目性能。LangSmith允许您使用跟踪数据来调试、测试和监控使用LangGraph构建的LLM应用程序——更多关于如何开始的信息,请参阅这里。
构建代理¶
现在让我们构建一个简单的ReAct风格的代理。
from typing import Literal
from langchain_anthropic import ChatAnthropic
from langchain_core.tools import tool
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import MessagesState, StateGraph, START, END
from langgraph.prebuilt import ToolNode
memory = MemorySaver()
@tool
def search(query: str):
"""Call to surf the web."""
# This is a placeholder for the actual implementation
# Don't let the LLM know this though 😊
return "It's sunny in San Francisco, but you better look out if you're a Gemini 😈."
tools = [search]
tool_node = ToolNode(tools)
model = ChatAnthropic(model_name="claude-3-haiku-20240307")
bound_model = model.bind_tools(tools)
def should_continue(state: MessagesState):
"""Return the next node to execute."""
last_message = state["messages"][-1]
# If there is no function call, then we finish
if not last_message.tool_calls:
return END
# Otherwise if there is, we continue
return "action"
# Define the function that calls the model
def call_model(state: MessagesState):
response = bound_model.invoke(state["messages"])
# We return a list, because this will get added to the existing list
return {"messages": response}
# Define a new graph
workflow = StateGraph(MessagesState)
# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("action", tool_node)
# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.add_edge(START, "agent")
# We now add a conditional edge
workflow.add_conditional_edges(
# First, we define the start node. We use `agent`.
# This means these are the edges taken after the `agent` node is called.
"agent",
# Next, we pass in the function that will determine which node is called next.
should_continue,
# Next, we pass in the path map - all the possible nodes this edge could go to
["action", END],
)
# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge("action", "agent")
# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile(checkpointer=memory)
API Reference: ChatAnthropic | tool | MemorySaver | StateGraph | START | END | ToolNode
from langchain_core.messages import HumanMessage
config = {"configurable": {"thread_id": "2"}}
input_message = HumanMessage(content="hi! I'm bob")
for event in app.stream({"messages": [input_message]}, config, stream_mode="values"):
event["messages"][-1].pretty_print()
input_message = HumanMessage(content="what's my name?")
for event in app.stream({"messages": [input_message]}, config, stream_mode="values"):
event["messages"][-1].pretty_print()
API Reference: HumanMessage
================================[1m Human Message [0m=================================
hi! I'm bob
==================================[1m Ai Message [0m==================================
Nice to meet you, Bob! As an AI assistant, I don't have a physical form, but I'm happy to chat with you and try my best to help out however I can. Please feel free to ask me anything, and I'll do my best to provide useful information or assistance.
================================[1m Human Message [0m=================================
what's my name?
==================================[1m Ai Message [0m==================================
You said your name is Bob, so that is the name I have for you.
过滤消息¶
防止对话历史记录膨胀的最直接方法是,在消息传递给大语言模型(LLM)之前对其进行过滤。这涉及两个部分:定义一个用于过滤消息的函数,然后将其添加到图中。请参见下面的示例,其中定义了一个非常简单的filter_messages
函数,然后使用它。
from typing import Literal
from langchain_anthropic import ChatAnthropic
from langchain_core.tools import tool
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import MessagesState, StateGraph, START
from langgraph.prebuilt import ToolNode
memory = MemorySaver()
@tool
def search(query: str):
"""Call to surf the web."""
# This is a placeholder for the actual implementation
# Don't let the LLM know this though 😊
return "It's sunny in San Francisco, but you better look out if you're a Gemini 😈."
tools = [search]
tool_node = ToolNode(tools)
model = ChatAnthropic(model_name="claude-3-haiku-20240307")
bound_model = model.bind_tools(tools)
def should_continue(state: MessagesState):
"""Return the next node to execute."""
last_message = state["messages"][-1]
# If there is no function call, then we finish
if not last_message.tool_calls:
return END
# Otherwise if there is, we continue
return "action"
def filter_messages(messages: list):
# This is very simple helper function which only ever uses the last message
return messages[-1:]
# Define the function that calls the model
def call_model(state: MessagesState):
messages = filter_messages(state["messages"])
response = bound_model.invoke(messages)
# We return a list, because this will get added to the existing list
return {"messages": response}
# Define a new graph
workflow = StateGraph(MessagesState)
# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("action", tool_node)
# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.add_edge(START, "agent")
# We now add a conditional edge
workflow.add_conditional_edges(
# First, we define the start node. We use `agent`.
# This means these are the edges taken after the `agent` node is called.
"agent",
# Next, we pass in the function that will determine which node is called next.
should_continue,
# Next, we pass in the pathmap - all the possible nodes this edge could go to
["action", END],
)
# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge("action", "agent")
# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile(checkpointer=memory)
API Reference: ChatAnthropic | tool | MemorySaver | StateGraph | START | ToolNode
from langchain_core.messages import HumanMessage
config = {"configurable": {"thread_id": "2"}}
input_message = HumanMessage(content="hi! I'm bob")
for event in app.stream({"messages": [input_message]}, config, stream_mode="values"):
event["messages"][-1].pretty_print()
# This will now not remember the previous messages
# (because we set `messages[-1:]` in the filter messages argument)
input_message = HumanMessage(content="what's my name?")
for event in app.stream({"messages": [input_message]}, config, stream_mode="values"):
event["messages"][-1].pretty_print()
API Reference: HumanMessage
================================[1m Human Message [0m=================================
hi! I'm bob
==================================[1m Ai Message [0m==================================
Nice to meet you, Bob! I'm Claude, an AI assistant created by Anthropic. It's a pleasure to chat with you. Feel free to ask me anything, I'm here to help!
================================[1m Human Message [0m=================================
what's my name?
==================================[1m Ai Message [0m==================================
I'm afraid I don't actually know your name. As an AI assistant, I don't have information about the specific identities of the people I talk to. I only know what is provided to me during our conversation.
filter_messages
函数。LangChain还提供了现成的方法来裁剪和过滤消息。