如何将 Pydantic 模型用作图状态¶
StateGraph 在初始化时接受一个 state_schema
参数,该参数指定了图中节点可以访问和更新的状态的“形状”。
在我们的示例中,我们通常使用 Python 原生的 TypedDict
作为 state_schema
(或者在 MessageGraph 的情况下,使用 列表),但 state_schema
可以是任何 类型。
在本操作指南中,我们将了解如何将 Pydantic BaseModel 用于 state_schema
,以对 输入 进行运行时验证。
已知限制
-
本笔记本使用 Pydantic v2
BaseModel
,这需要langchain-core >= 0.3
。使用langchain-core < 0.3
会因混合使用 Pydantic v1 和 v2BaseModels
而导致错误。 - 目前,图的 `输出` **不会** 是 pydantic 模型的实例。
- 运行时验证仅在节点的 **输入** 上进行,而不在输出上进行。
- pydantic 的验证错误跟踪不会显示错误出现在哪个节点中。
安装设置¶
首先,我们需要安装所需的软件包。
import getpass
import os
def _set_env(var: str):
if not os.environ.get(var):
os.environ[var] = getpass.getpass(f"{var}: ")
_set_env("OPENAI_API_KEY")
为 LangGraph 开发设置 LangSmith
注册 LangSmith,以便快速发现问题并提升你的 LangGraph 项目的性能。LangSmith 允许你使用跟踪数据来调试、测试和监控使用 LangGraph 构建的大语言模型应用程序 — 点击 此处 了解更多关于如何开始使用的信息。
输入验证¶
from langgraph.graph import StateGraph, START, END
from typing_extensions import TypedDict
from pydantic import BaseModel
# The overall state of the graph (this is the public state shared across nodes)
class OverallState(BaseModel):
a: str
def node(state: OverallState):
return {"a": "goodbye"}
# Build the state graph
builder = StateGraph(OverallState)
builder.add_node(node) # node_1 is the first node
builder.add_edge(START, "node") # Start the graph with node_1
builder.add_edge("node", END) # End the graph after node_1
graph = builder.compile()
# Test the graph with a valid input
graph.invoke({"a": "hello"})
使用**无效**输入调用图
try:
graph.invoke({"a": 123}) # Should be a string
except Exception as e:
print("An exception was raised because `a` is an integer rather than a string.")
print(e)
An exception was raised because `a` is an integer rather than a string.
1 validation error for OverallState
a
Input should be a valid string [type=string_type, input_value=123, input_type=int]
For further information visit https://errors.pydantic.dev/2.9/v/string_type
多节点¶
运行时验证在多节点图中同样有效。在以下示例中,bad_node
将 a
更新为整数。
由于运行时验证是在 输入 上进行的,因此验证错误将在调用 ok_node
时出现(而不是在 bad_node
返回与架构不一致的状态更新时出现)。
from langgraph.graph import StateGraph, START, END
from typing_extensions import TypedDict
from pydantic import BaseModel
# The overall state of the graph (this is the public state shared across nodes)
class OverallState(BaseModel):
a: str
def bad_node(state: OverallState):
return {
"a": 123 # Invalid
}
def ok_node(state: OverallState):
return {"a": "goodbye"}
# Build the state graph
builder = StateGraph(OverallState)
builder.add_node(bad_node)
builder.add_node(ok_node)
builder.add_edge(START, "bad_node")
builder.add_edge("bad_node", "ok_node")
builder.add_edge("ok_node", END)
graph = builder.compile()
# Test the graph with a valid input
try:
graph.invoke({"a": "hello"})
except Exception as e:
print("An exception was raised because bad_node sets `a` to an integer.")
print(e)
An exception was raised because bad_node sets `a` to an integer.
1 validation error for OverallState
a
Input should be a valid string [type=string_type, input_value=123, input_type=int]
For further information visit https://errors.pydantic.dev/2.9/v/string_type
多节点¶
运行时验证在多节点图中同样有效。在以下示例中,bad_node
将 a
更新为整数。
由于运行时验证是在 输入 上进行的,因此验证错误将在调用 ok_node
时出现(而不是在 bad_node
返回与架构不一致的状态更新时出现)。
from langgraph.graph import StateGraph, START, END
from typing_extensions import TypedDict
from pydantic import BaseModel
# The overall state of the graph (this is the public state shared across nodes)
class OverallState(BaseModel):
a: str
def bad_node(state: OverallState):
return {
"a": 123 # Invalid
}
def ok_node(state: OverallState):
return {"a": "goodbye"}
# Build the state graph
builder = StateGraph(OverallState)
builder.add_node(bad_node)
builder.add_node(ok_node)
builder.add_edge(START, "bad_node")
builder.add_edge("bad_node", "ok_node")
builder.add_edge("ok_node", END)
graph = builder.compile()
# Test the graph with a valid input
try:
graph.invoke({"a": "hello"})
except Exception as e:
print("An exception was raised because bad_node sets `a` to an integer.")
print(e)
Pydantic 模型的高级用法¶
本节涵盖了在 LangGraph 中使用 Pydantic 模型时的更高级主题。
序列化行为¶
当使用 Pydantic 模型作为状态模式时,理解序列化的工作原理非常重要,特别是在以下情况下: - 将 Pydantic 对象作为输入传递 - 从图中接收输出 - 使用嵌套的 Pydantic 模型
让我们来看看这些行为的实际表现:
from langgraph.graph import StateGraph, START, END
from pydantic import BaseModel
class NestedModel(BaseModel):
value: str
class ComplexState(BaseModel):
text: str
count: int
nested: NestedModel
def process_node(state: ComplexState):
# Node receives a validated Pydantic object
print(f"Input state type: {type(state)}")
print(f"Nested type: {type(state.nested)}")
# Return a dictionary update
return {"text": state.text + " processed", "count": state.count + 1}
# Build the graph
builder = StateGraph(ComplexState)
builder.add_node("process", process_node)
builder.add_edge(START, "process")
builder.add_edge("process", END)
graph = builder.compile()
# Create a Pydantic instance for input
input_state = ComplexState(text="hello", count=0, nested=NestedModel(value="test"))
print(f"Input object type: {type(input_state)}")
# Invoke graph with a Pydantic instance
result = graph.invoke(input_state)
print(f"Output type: {type(result)}")
print(f"Output content: {result}")
# Convert back to Pydantic model if needed
output_model = ComplexState(**result)
print(f"Converted back to Pydantic: {type(output_model)}")
运行时类型强制转换¶
Pydantic 会对某些数据类型执行运行时类型强制转换。这可能会很有用,但如果你没有意识到这一点,也可能会导致意外的行为。
from langgraph.graph import StateGraph, START, END
from pydantic import BaseModel
class CoercionExample(BaseModel):
# Pydantic will coerce string numbers to integers
number: int
# Pydantic will parse string booleans to bool
flag: bool
def inspect_node(state: CoercionExample):
print(f"number: {state.number} (type: {type(state.number)})")
print(f"flag: {state.flag} (type: {type(state.flag)})")
return {}
builder = StateGraph(CoercionExample)
builder.add_node("inspect", inspect_node)
builder.add_edge(START, "inspect")
builder.add_edge("inspect", END)
graph = builder.compile()
# Demonstrate coercion with string inputs that will be converted
result = graph.invoke({"number": "42", "flag": "true"})
# This would fail with a validation error
try:
graph.invoke({"number": "not-a-number", "flag": "true"})
except Exception as e:
print(f"\nExpected validation error: {e}")
使用消息模型¶
在你的状态架构中使用 LangChain 消息类型时,序列化方面有一些重要的注意事项。当通过网络传输消息对象时,你应该使用 AnyMessage
(而不是 BaseMessage
)来进行正确的序列化/反序列化:
from langgraph.graph import StateGraph, START, END
from pydantic import BaseModel
from langchain_core.messages import HumanMessage, AIMessage, AnyMessage
from typing import List
class ChatState(BaseModel):
messages: List[AnyMessage]
context: str
def add_message(state: ChatState):
return {"messages": state.messages + [AIMessage(content="Hello there!")]}
builder = StateGraph(ChatState)
builder.add_node("add_message", add_message)
builder.add_edge(START, "add_message")
builder.add_edge("add_message", END)
graph = builder.compile()
# Create input with a message
initial_state = ChatState(
messages=[HumanMessage(content="Hi")], context="Customer support chat"
)
result = graph.invoke(initial_state)
print(f"Output: {result}")
# Convert back to Pydantic model to see message types
output_model = ChatState(**result)
for i, msg in enumerate(output_model.messages):
print(f"Message {i}: {type(msg).__name__} - {msg.content}")
API Reference: HumanMessage | AIMessage | AnyMessage