基于RAG和自我纠正的代码生成¶
AlphaCodium提出了一种使用控制流的代码生成方法。
主要思想:通过迭代构建来回答编码问题。
AlphaCodium会针对特定问题在公开和AI生成的测试上迭代测试并改进答案。
我们将使用LangGraph从头开始实现其中的一些想法:
- 我们从用户指定的一组文档开始
- 使用长上下文的LLM来读取这些文档,并使用RAG来回答基于这些文档的问题
- 我们将调用一个工具来生成结构化的输出
- 我们将执行两个单元测试(检查导入和代码执行)之前返回解决方案给用户
环境搭建¶
首先,让我们安装所需的包并设置我们需要的API密钥
import getpass
import os
def _set_env(var: str):
if not os.environ.get(var):
os.environ[var] = getpass.getpass(f"{var}: ")
_set_env("OPENAI_API_KEY")
_set_env("ANTHROPIC_API_KEY")
为LangGraph开发设置LangSmith
注册LangSmith,可以快速发现并解决您的LangGraph项目中的问题,提高项目性能。LangSmith允许您使用跟踪数据来调试、测试和监控使用LangGraph构建的LLM应用程序——更多关于如何开始的信息,请参阅这里。
文档¶
加载 LangChain 表达语言 (LCEL) 文档作为示例。
from bs4 import BeautifulSoup as Soup
from langchain_community.document_loaders.recursive_url_loader import RecursiveUrlLoader
# LCEL docs
url = "https://python.langchain.com/docs/concepts/lcel/"
loader = RecursiveUrlLoader(
url=url, max_depth=20, extractor=lambda x: Soup(x, "html.parser").text
)
docs = loader.load()
# Sort the list based on the URLs and get the text
d_sorted = sorted(docs, key=lambda x: x.metadata["source"])
d_reversed = list(reversed(d_sorted))
concatenated_content = "\n\n\n --- \n\n\n".join(
[doc.page_content for doc in d_reversed]
)
API Reference: RecursiveUrlLoader
大型语言模型¶
代码解决方案¶
首先,我们将尝试使用OpenAI和Claude3的功能调用。
我们将创建一个使用OpenAI或Claude的code_gen_chain
并在这里进行测试。
使用Pydantic与LangChain
本笔记本使用Pydantic v2 BaseModel
,这需要langchain-core >= 0.3
。使用langchain-core < 0.3
将会由于混合使用Pydantic v1和v2 BaseModels
而导致错误。
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
### OpenAI
# Grader prompt
code_gen_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"""You are a coding assistant with expertise in LCEL, LangChain expression language. \n
Here is a full set of LCEL documentation: \n ------- \n {context} \n ------- \n Answer the user
question based on the above provided documentation. Ensure any code you provide can be executed \n
with all required imports and variables defined. Structure your answer with a description of the code solution. \n
Then list the imports. And finally list the functioning code block. Here is the user question:""",
),
("placeholder", "{messages}"),
]
)
# Data model
class code(BaseModel):
"""Schema for code solutions to questions about LCEL."""
prefix: str = Field(description="Description of the problem and approach")
imports: str = Field(description="Code block import statements")
code: str = Field(description="Code block not including import statements")
expt_llm = "gpt-4o-mini"
llm = ChatOpenAI(temperature=0, model=expt_llm)
code_gen_chain_oai = code_gen_prompt | llm.with_structured_output(code)
question = "How do I build a RAG chain in LCEL?"
solution = code_gen_chain_oai.invoke(
{"context": concatenated_content, "messages": [("user", question)]}
)
solution
API Reference: ChatPromptTemplate | ChatOpenAI
code(prefix='To build a Retrieval-Augmented Generation (RAG) chain in LCEL, you will need to set up a chain that combines a retriever and a language model (LLM). The retriever will fetch relevant documents based on a query, and the LLM will generate a response using the retrieved documents as context. Here’s how you can do it:', imports='from langchain_core.prompts import ChatPromptTemplate\nfrom langchain_openai import ChatOpenAI\nfrom langchain_core.output_parsers import StrOutputParser\nfrom langchain_core.retrievers import MyRetriever', code='# Define the retriever\nretriever = MyRetriever() # Replace with your specific retriever implementation\n\n# Define the LLM model\nmodel = ChatOpenAI(model="gpt-4")\n\n# Create a prompt template for the LLM\nprompt_template = ChatPromptTemplate.from_template("Given the following documents, answer the question: {question}\nDocuments: {documents}")\n\n# Create the RAG chain\nrag_chain = prompt_template | retriever | model | StrOutputParser()\n\n# Example usage\nquery = "What are the benefits of using RAG?"\nresponse = rag_chain.invoke({"question": query})\nprint(response)')
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import ChatPromptTemplate
### Anthropic
# Prompt to enforce tool use
code_gen_prompt_claude = ChatPromptTemplate.from_messages(
[
(
"system",
"""<instructions> You are a coding assistant with expertise in LCEL, LangChain expression language. \n
Here is the LCEL documentation: \n ------- \n {context} \n ------- \n Answer the user question based on the \n
above provided documentation. Ensure any code you provide can be executed with all required imports and variables \n
defined. Structure your answer: 1) a prefix describing the code solution, 2) the imports, 3) the functioning code block. \n
Invoke the code tool to structure the output correctly. </instructions> \n Here is the user question:""",
),
("placeholder", "{messages}"),
]
)
# LLM
expt_llm = "claude-3-opus-20240229"
llm = ChatAnthropic(
model=expt_llm,
default_headers={"anthropic-beta": "tools-2024-04-04"},
)
structured_llm_claude = llm.with_structured_output(code, include_raw=True)
# Optional: Check for errors in case tool use is flaky
def check_claude_output(tool_output):
"""Check for parse error or failure to call the tool"""
# Error with parsing
if tool_output["parsing_error"]:
# Report back output and parsing errors
print("Parsing error!")
raw_output = str(tool_output["raw"].content)
error = tool_output["parsing_error"]
raise ValueError(
f"Error parsing your output! Be sure to invoke the tool. Output: {raw_output}. \n Parse error: {error}"
)
# Tool was not invoked
elif not tool_output["parsed"]:
print("Failed to invoke tool!")
raise ValueError(
"You did not use the provided tool! Be sure to invoke the tool to structure the output."
)
return tool_output
# Chain with output check
code_chain_claude_raw = (
code_gen_prompt_claude | structured_llm_claude | check_claude_output
)
def insert_errors(inputs):
"""Insert errors for tool parsing in the messages"""
# Get errors
error = inputs["error"]
messages = inputs["messages"]
messages += [
(
"assistant",
f"Retry. You are required to fix the parsing errors: {error} \n\n You must invoke the provided tool.",
)
]
return {
"messages": messages,
"context": inputs["context"],
}
# This will be run as a fallback chain
fallback_chain = insert_errors | code_chain_claude_raw
N = 3 # Max re-tries
code_gen_chain_re_try = code_chain_claude_raw.with_fallbacks(
fallbacks=[fallback_chain] * N, exception_key="error"
)
def parse_output(solution):
"""When we add 'include_raw=True' to structured output,
it will return a dict w 'raw', 'parsed', 'parsing_error'."""
return solution["parsed"]
# Optional: With re-try to correct for failure to invoke tool
code_gen_chain = code_gen_chain_re_try | parse_output
# No re-try
code_gen_chain = code_gen_prompt_claude | structured_llm_claude | parse_output
API Reference: ChatAnthropic | ChatPromptTemplate
# Test
question = "How do I build a RAG chain in LCEL?"
solution = code_gen_chain.invoke(
{"context": concatenated_content, "messages": [("user", question)]}
)
solution
code(prefix="To build a RAG (Retrieval Augmented Generation) chain in LCEL, you can use a retriever to fetch relevant documents and then pass those documents to a chat model to generate a response based on the retrieved context. Here's an example of how to do this:", imports='from langchain_expressions import retrieve, chat_completion', code='question = "What is the capital of France?"\n\nrelevant_docs = retrieve(question)\n\nresult = chat_completion(\n model=\'openai-gpt35\', \n messages=[\n {{{"role": "system", "content": "Answer the question based on the retrieved context.}}},\n {{{"role": "user", "content": \'\'\'\n Context: {relevant_docs}\n Question: {question}\n \'\'\'}}\n ]\n)\n\nprint(result)')
状态¶
我们的状态是一个字典,其中包含与代码生成相关的键(errors、question、code generation)。
from typing import List
from typing_extensions import TypedDict
class GraphState(TypedDict):
"""
Represents the state of our graph.
Attributes:
error : Binary flag for control flow to indicate whether test error was tripped
messages : With user question, error messages, reasoning
generation : Code solution
iterations : Number of tries
"""
error: str
messages: List
generation: str
iterations: int
图表¶
我们的图表展示了上图所示的逻辑流程。
### Parameter
# Max tries
max_iterations = 3
# Reflect
# flag = 'reflect'
flag = "do not reflect"
### Nodes
def generate(state: GraphState):
"""
Generate a code solution
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation
"""
print("---GENERATING CODE SOLUTION---")
# State
messages = state["messages"]
iterations = state["iterations"]
error = state["error"]
# We have been routed back to generation with an error
if error == "yes":
messages += [
(
"user",
"Now, try again. Invoke the code tool to structure the output with a prefix, imports, and code block:",
)
]
# Solution
code_solution = code_gen_chain.invoke(
{"context": concatenated_content, "messages": messages}
)
messages += [
(
"assistant",
f"{code_solution.prefix} \n Imports: {code_solution.imports} \n Code: {code_solution.code}",
)
]
# Increment
iterations = iterations + 1
return {"generation": code_solution, "messages": messages, "iterations": iterations}
def code_check(state: GraphState):
"""
Check code
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, error
"""
print("---CHECKING CODE---")
# State
messages = state["messages"]
code_solution = state["generation"]
iterations = state["iterations"]
# Get solution components
imports = code_solution.imports
code = code_solution.code
# Check imports
try:
exec(imports)
except Exception as e:
print("---CODE IMPORT CHECK: FAILED---")
error_message = [("user", f"Your solution failed the import test: {e}")]
messages += error_message
return {
"generation": code_solution,
"messages": messages,
"iterations": iterations,
"error": "yes",
}
# Check execution
try:
exec(imports + "\n" + code)
except Exception as e:
print("---CODE BLOCK CHECK: FAILED---")
error_message = [("user", f"Your solution failed the code execution test: {e}")]
messages += error_message
return {
"generation": code_solution,
"messages": messages,
"iterations": iterations,
"error": "yes",
}
# No errors
print("---NO CODE TEST FAILURES---")
return {
"generation": code_solution,
"messages": messages,
"iterations": iterations,
"error": "no",
}
def reflect(state: GraphState):
"""
Reflect on errors
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation
"""
print("---GENERATING CODE SOLUTION---")
# State
messages = state["messages"]
iterations = state["iterations"]
code_solution = state["generation"]
# Prompt reflection
# Add reflection
reflections = code_gen_chain.invoke(
{"context": concatenated_content, "messages": messages}
)
messages += [("assistant", f"Here are reflections on the error: {reflections}")]
return {"generation": code_solution, "messages": messages, "iterations": iterations}
### Edges
def decide_to_finish(state: GraphState):
"""
Determines whether to finish.
Args:
state (dict): The current graph state
Returns:
str: Next node to call
"""
error = state["error"]
iterations = state["iterations"]
if error == "no" or iterations == max_iterations:
print("---DECISION: FINISH---")
return "end"
else:
print("---DECISION: RE-TRY SOLUTION---")
if flag == "reflect":
return "reflect"
else:
return "generate"
from langgraph.graph import END, StateGraph, START
workflow = StateGraph(GraphState)
# Define the nodes
workflow.add_node("generate", generate) # generation solution
workflow.add_node("check_code", code_check) # check code
workflow.add_node("reflect", reflect) # reflect
# Build graph
workflow.add_edge(START, "generate")
workflow.add_edge("generate", "check_code")
workflow.add_conditional_edges(
"check_code",
decide_to_finish,
{
"end": END,
"reflect": "reflect",
"generate": "generate",
},
)
workflow.add_edge("reflect", "generate")
app = workflow.compile()
API Reference: END | StateGraph | START
question = "How can I directly pass a string to a runnable and use it to construct the input needed for my prompt?"
solution = app.invoke({"messages": [("user", question)], "iterations": 0, "error": ""})
---GENERATING CODE SOLUTION---
---CHECKING CODE---
---CODE IMPORT CHECK: FAILED---
---DECISION: RE-TRY SOLUTION---
---GENERATING CODE SOLUTION---
---CHECKING CODE---
---CODE IMPORT CHECK: FAILED---
---DECISION: RE-TRY SOLUTION---
---GENERATING CODE SOLUTION---
---CHECKING CODE---
---CODE BLOCK CHECK: FAILED---
---DECISION: FINISH---
code(prefix='To directly pass a string to a runnable and use it to construct the input needed for a prompt, you can use the `_from_value` method on a PromptTemplate in LCEL. Create a PromptTemplate with the desired template string, then call `_from_value` on it with a dictionary mapping the input variable names to their values. This will return a PromptValue that you can pass directly to any chain or model that accepts a prompt input.', imports='from langchain_core.prompts import PromptTemplate', code='user_string = "langchain is awesome"\n\nprompt_template = PromptTemplate.from_template("Tell me more about how {user_input}.")\n\nprompt_value = prompt_template._from_value({"user_input": user_string})\n\n# Pass the PromptValue directly to a model or chain \nchain.run(prompt_value)')
评估¶
这里 是一个公开的LCEL问题数据集。
我将其保存为 lcel-teacher-eval
。
你也可以在这里找到 csv 文件:这里。
# Clone the dataset to your tenant to use it
try:
public_dataset = (
"https://smith.langchain.com/public/326674a6-62bd-462d-88ae-eea49d503f9d/d"
)
client.clone_public_dataset(public_dataset)
except:
print("Please setup LangSmith")
Dataset(name='lcel-teacher-eval', description='Eval set for LCEL teacher', data_type=<DataType.kv: 'kv'>, id=UUID('8b57696d-14ea-4f00-9997-b3fc74a16846'), created_at=datetime.datetime(2024, 9, 16, 22, 50, 4, 169288, tzinfo=datetime.timezone.utc), modified_at=datetime.datetime(2024, 9, 16, 22, 50, 4, 169288, tzinfo=datetime.timezone.utc), example_count=0, session_count=0, last_session_start_time=None, inputs_schema=None, outputs_schema=None)
自定义评估。
from langsmith.schemas import Example, Run
def check_import(run: Run, example: Example) -> dict:
imports = run.outputs.get("imports")
try:
exec(imports)
return {"key": "import_check", "score": 1}
except Exception:
return {"key": "import_check", "score": 0}
def check_execution(run: Run, example: Example) -> dict:
imports = run.outputs.get("imports")
code = run.outputs.get("code")
try:
exec(imports + "\n" + code)
return {"key": "code_execution_check", "score": 1}
except Exception:
return {"key": "code_execution_check", "score": 0}
比较LangGraph和Context Stuffing。
def predict_base_case(example: dict):
"""Context stuffing"""
solution = code_gen_chain.invoke(
{"context": concatenated_content, "messages": [("user", example["question"])]}
)
return {"imports": solution.imports, "code": solution.code}
def predict_langgraph(example: dict):
"""LangGraph"""
graph = app.invoke(
{"messages": [("user", example["question"])], "iterations": 0, "error": ""}
)
solution = graph["generation"]
return {"imports": solution.imports, "code": solution.code}
from langsmith.evaluation import evaluate
# Evaluator
code_evalulator = [check_import, check_execution]
# Dataset
dataset_name = "lcel-teacher-eval"
# Run base case
try:
experiment_results_ = evaluate(
predict_base_case,
data=dataset_name,
evaluators=code_evalulator,
experiment_prefix=f"test-without-langgraph-{expt_llm}",
max_concurrency=2,
metadata={
"llm": expt_llm,
},
)
except:
print("Please setup LangSmith")
# Run with langgraph
try:
experiment_results = evaluate(
predict_langgraph,
data=dataset_name,
evaluators=code_evalulator,
experiment_prefix=f"test-with-langgraph-{expt_llm}-{flag}",
max_concurrency=2,
metadata={
"llm": expt_llm,
"feedback": flag,
},
)
except:
print("Please setup LangSmith")
结果:
LangGraph优于基准情况
: 添加重试循环提高了性能反射没有帮助
: 在重试回归之前进行反射与直接将错误返回LLM相比没有帮助GPT-4优于Claude3
: Claude3在使用Opus和Haiku工具时分别失败了3次和1次
https://smith.langchain.com/public/78a3d858-c811-4e46-91cb-0f10ef56260b/d