Skip to content

🚀 LangGraph 快速入门

在这个教程中,我们将构建一个支持聊天机器人的LangGraph,它可以:

回答常见问题 通过搜索网络 ✅ 维护通话状态 跨越多个通话 ✅ 路由复杂查询 到人工进行审核 ✅ 使用自定义状态 来控制其行为 ✅ 回溯和探索 替代的对话路径

我们将从一个**基本的聊天机器人**开始,并逐步添加更复杂的功能,同时介绍关键的LangGraph概念。让我们开始吧!🌟

环境配置

首先,安装所需的包并配置您的环境:

%%capture --no-stderr
%pip install -U langgraph langsmith langchain_anthropic
import getpass
import os


def _set_env(var: str):
    if not os.environ.get(var):
        os.environ[var] = getpass.getpass(f"{var}: ")


_set_env("ANTHROPIC_API_KEY")

为LangGraph开发设置LangSmith

注册LangSmith,可以快速发现并解决您的LangGraph项目中的问题,提高项目性能。LangSmith允许您使用跟踪数据来调试、测试和监控使用LangGraph构建的LLM应用程序——更多关于如何开始的信息,请参阅这里

第一部分:构建一个基本聊天机器人

我们将首先使用LangGraph创建一个简单的聊天机器人。此聊天机器人将直接响应用户消息。虽然简单,但它将说明使用LangGraph构建应用程序的核心概念。到本节结束时,您将拥有一个基本的聊天机器人。

首先创建一个StateGraph对象。StateGraph定义了我们聊天机器人的“状态机”结构。我们将添加节点来表示聊天机器人可以调用的LLM和函数,并添加来指定机器人如何在这些函数之间进行转换。

from typing import Annotated

from typing_extensions import TypedDict

from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages


class State(TypedDict):
    # Messages have the type "list". The `add_messages` function
    # in the annotation defines how this state key should be updated
    # (in this case, it appends messages to the list, rather than overwriting them)
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)

API Reference: StateGraph | START | END | add_messages

我们的图现在可以处理两个关键任务:

  1. 每个节点可以接收当前的状态作为输入,并输出状态的更新。
  2. 更新消息将追加到现有列表中,而不是覆盖它,这得益于预构建的add_messages函数与Annotated语法一起使用。

概念

在定义图时,第一步是定义其状态状态包括图的模式和状态更新处理函数。在我们的示例中,状态是一个TypedDict,包含一个键:消息。使用add_messages状态更新函数来追加新消息到列表中,而不是覆盖它。没有状态更新注解的键将覆盖先前的值。了解更多关于状态、更新器及相关概念的内容,请参阅此指南


接下来,添加一个“chatbot”节点。节点代表工作单元。它们通常是常规的Python函数。

from langchain_anthropic import ChatAnthropic

llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")


def chatbot(state: State):
    return {"messages": [llm.invoke(state["messages"])]}


# The first argument is the unique node name
# The second argument is the function or object that will be called whenever
# the node is used.
graph_builder.add_node("chatbot", chatbot)

API Reference: ChatAnthropic

注意 chatbot 节点函数如何将当前的 State 作为输入,并返回一个包含更新后的 messages 列表的字典,该列表的键为 "messages"。这是所有 LangGraph 节点函数的基本模式。

在我们的 State 中,add_messages 函数会将大语言模型(LLM)的响应消息追加到当前状态中已有的消息列表中。

接下来,添加一个 entry 点。这告诉我们的图**每次运行时从哪里开始工作**。

graph_builder.add_edge(START, "chatbot")

同样,设置一个 finish 点。这指示图表 “每次运行此节点时,都可以退出。”

graph_builder.add_edge("chatbot", END)

最后,我们需要能够运行我们的图。为此,调用图构建器上的"compile()"方法。这将创建一个"CompiledGraph",我们可以用它来调用状态。

graph = graph_builder.compile()

你可以使用get_graph方法和其中一种“绘制”方法(如draw_asciidraw_png)来可视化图表。每种draw方法都需要额外的依赖项。

from IPython.display import Image, display

try:
    display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
    # This requires some extra dependencies and is optional
    pass

现在让我们运行聊天机器人!

提示: 您可以在任何时候通过输入"quit"、"exit"或"q"来退出聊天循环。

def stream_graph_updates(user_input: str):
    for event in graph.stream({"messages": [{"role": "user", "content": user_input}]}):
        for value in event.values():
            print("Assistant:", value["messages"][-1].content)


while True:
    try:
        user_input = input("User: ")
        if user_input.lower() in ["quit", "exit", "q"]:
            print("Goodbye!")
            break

        stream_graph_updates(user_input)
    except:
        # fallback if input() is not available
        user_input = "What do you know about LangGraph?"
        print("User: " + user_input)
        stream_graph_updates(user_input)
        break
Assistant: LangGraph is a library designed to help build stateful multi-agent applications using language models. It provides tools for creating workflows and state machines to coordinate multiple AI agents or language model interactions. LangGraph is built on top of LangChain, leveraging its components while adding graph-based coordination capabilities. It's particularly useful for developing more complex, stateful AI applications that go beyond simple query-response interactions.
Goodbye!
恭喜! 您已使用LangGraph构建了自己的第一个聊天机器人。此机器人可以通过接收用户输入并使用LLM生成响应来参与基本对话。您可以通过提供的链接查看上述调用的LangSmith Trace

然而,您可能已经注意到,机器人的知识仅限于其训练数据中的内容。在下一节中,我们将添加一个网络搜索工具来扩展机器人的知识,并使其功能更强大。

以下是本节的完整代码供您参考:

完整代码

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from typing_extensions import TypedDict

from langgraph.graph import StateGraph
from langgraph.graph.message import add_messages


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")


def chatbot(state: State):
    return {"messages": [llm.invoke(state["messages"])]}


# The first argument is the unique node name
# The second argument is the function or object that will be called whenever
# the node is used.
graph_builder.add_node("chatbot", chatbot)
graph_builder.set_entry_point("chatbot")
graph_builder.set_finish_point("chatbot")
graph = graph_builder.compile()
API Reference: ChatAnthropic | StateGraph | add_messages

第2部分:🛠️ 使用工具增强聊天机器人

为了处理聊天机器人无法从“记忆”中回答的查询,我们将集成一个网络搜索工具。我们的机器人可以使用此工具查找相关信息并提供更好的响应。

要求

在开始之前,请确保已安装必要的软件包并设置了API密钥:

首先,安装使用Tavily搜索引擎所需的软件包,并设置您的TAVILY_API_KEY

%%capture --no-stderr
%pip install -U tavily-python langchain_community

_set_env("TAVILY_API_KEY")
TAVILY_API_KEY:  ········
接下来,定义工具:

from langchain_community.tools.tavily_search import TavilySearchResults

tool = TavilySearchResults(max_results=2)
tools = [tool]
tool.invoke("What's a 'node' in LangGraph?")

API Reference: TavilySearchResults

[{'url': 'https://medium.com/@cplog/introduction-to-langgraph-a-beginners-guide-14f9be027141',
  'content': 'Nodes: Nodes are the building blocks of your LangGraph. Each node represents a function or a computation step. You define nodes to perform specific tasks, such as processing input, making ...'},
 {'url': 'https://saksheepatil05.medium.com/demystifying-langgraph-a-beginner-friendly-dive-into-langgraph-concepts-5ffe890ddac0',
  'content': 'Nodes (Tasks): Nodes are like the workstations on the assembly line. Each node performs a specific task on the product. In LangGraph, nodes are Python functions that take the current state, do some work, and return an updated state. Next, we define the nodes, each representing a task in our sandwich-making process.'}]

结果是我们的聊天机器人可以用来回答问题的页面摘要。

接下来,我们将开始定义我们的图。以下内容与第一部分**完全相同**,除了我们在LLM上添加了bind_tools。这可以让LLM知道如果它想要使用我们的搜索引擎,应该使用正确的JSON格式。

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from typing_extensions import TypedDict

from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
# Modification: tell the LLM which tools it can call
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    return {"messages": [llm_with_tools.invoke(state["messages"])]}


graph_builder.add_node("chatbot", chatbot)

API Reference: ChatAnthropic | StateGraph | START | END | add_messages

接下来,我们需要创建一个函数,如果调用了工具,则实际运行这些工具。我们将通过将工具添加到一个新的节点上来实现这一点。

下面,我们实现了一个BasicToolNode,它检查状态中的最新消息,并在消息包含tool_calls时调用工具。它依赖于LLM的tool_calling支持,该功能在Anthropic、OpenAI、Google Gemini以及其他许多LLM提供商中可用。

我们将在后面用LangGraph的预构建工具节点替换它,以加快速度,但首先自己构建它具有启发性。

import json

from langchain_core.messages import ToolMessage


class BasicToolNode:
    """A node that runs the tools requested in the last AIMessage."""

    def __init__(self, tools: list) -> None:
        self.tools_by_name = {tool.name: tool for tool in tools}

    def __call__(self, inputs: dict):
        if messages := inputs.get("messages", []):
            message = messages[-1]
        else:
            raise ValueError("No message found in input")
        outputs = []
        for tool_call in message.tool_calls:
            tool_result = self.tools_by_name[tool_call["name"]].invoke(
                tool_call["args"]
            )
            outputs.append(
                ToolMessage(
                    content=json.dumps(tool_result),
                    name=tool_call["name"],
                    tool_call_id=tool_call["id"],
                )
            )
        return {"messages": outputs}


tool_node = BasicToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)

API Reference: ToolMessage

添加了工具节点后,我们可以定义conditional_edges

回想一下,**边**用于从一个节点到下一个节点路由控制流。**条件边**通常包含“if”语句,根据当前图的状态将控制流导向不同的节点。这些函数接收当前图的state,并返回一个字符串或字符串列表,指示下一个要调用的节点。

下面,我们将定义一个名为route_tools的路由器函数,该函数检查聊天机器人的输出中是否存在工具调用。通过调用add_conditional_edges将此函数提供给图,告诉图每当chatbot节点完成时,都要检查此函数以确定下一步去哪里。

如果存在工具调用,条件将路由到tools,否则将路由到END

稍后,我们将用预构建的tools_condition替换它,以使代码更简洁,但首先自己实现它可以使事情更清楚。

def route_tools(
    state: State,
):
    """
    Use in the conditional_edge to route to the ToolNode if the last message
    has tool calls. Otherwise, route to the end.
    """
    if isinstance(state, list):
        ai_message = state[-1]
    elif messages := state.get("messages", []):
        ai_message = messages[-1]
    else:
        raise ValueError(f"No messages found in input state to tool_edge: {state}")
    if hasattr(ai_message, "tool_calls") and len(ai_message.tool_calls) > 0:
        return "tools"
    return END


# The `tools_condition` function returns "tools" if the chatbot asks to use a tool, and "END" if
# it is fine directly responding. This conditional routing defines the main agent loop.
graph_builder.add_conditional_edges(
    "chatbot",
    route_tools,
    # The following dictionary lets you tell the graph to interpret the condition's outputs as a specific node
    # It defaults to the identity function, but if you
    # want to use a node named something else apart from "tools",
    # You can update the value of the dictionary to something else
    # e.g., "tools": "my_tools"
    {"tools": "tools", END: END},
)
# Any time a tool is called, we return to the chatbot to decide the next step
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")
graph = graph_builder.compile()

注意,条件边从单个节点开始。这告诉图,“每当chatbot节点运行时,如果调用了工具,则转到tools,如果直接响应,则结束循环。”

就像预构建的tools_condition一样,我们的函数在没有工具调用时返回END字符串。当图转换到END时,它没有更多的任务要完成,并且停止执行。因为条件可以返回END,这次我们不需要显式设置一个finish_point。我们的图已经有了结束的方法!

让我们可视化我们构建的图。以下函数有一些额外的依赖项来运行,这些依赖项对于本教程来说并不重要。

from IPython.display import Image, display

try:
    display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
    # This requires some extra dependencies and is optional
    pass

现在我们可以向机器人询问其训练数据之外的问题了。

while True:
    try:
        user_input = input("User: ")
        if user_input.lower() in ["quit", "exit", "q"]:
            print("Goodbye!")
            break

        stream_graph_updates(user_input)
    except:
        # fallback if input() is not available
        user_input = "What do you know about LangGraph?"
        print("User: " + user_input)
        stream_graph_updates(user_input)
        break
Assistant: [{'text': "To provide you with accurate and up-to-date information about LangGraph, I'll need to search for the latest details. Let me do that for you.", 'type': 'text'}, {'id': 'toolu_01Q588CszHaSvvP2MxRq9zRD', 'input': {'query': 'LangGraph AI tool information'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Assistant: [{"url": "https://www.langchain.com/langgraph", "content": "LangGraph sets the foundation for how we can build and scale AI workloads \u2014 from conversational agents, complex task automation, to custom LLM-backed experiences that 'just work'. The next chapter in building complex production-ready features with LLMs is agentic, and with LangGraph and LangSmith, LangChain delivers an out-of-the-box solution ..."}, {"url": "https://github.com/langchain-ai/langgraph", "content": "Overview. LangGraph is a library for building stateful, multi-actor applications with LLMs, used to create agent and multi-agent workflows. Compared to other LLM frameworks, it offers these core benefits: cycles, controllability, and persistence. LangGraph allows you to define flows that involve cycles, essential for most agentic architectures ..."}]
Assistant: Based on the search results, I can provide you with information about LangGraph:

1. Purpose:
   LangGraph is a library designed for building stateful, multi-actor applications with Large Language Models (LLMs). It's particularly useful for creating agent and multi-agent workflows.

2. Developer:
   LangGraph is developed by LangChain, a company known for its tools and frameworks in the AI and LLM space.

3. Key Features:
   - Cycles: LangGraph allows the definition of flows that involve cycles, which is essential for most agentic architectures.
   - Controllability: It offers enhanced control over the application flow.
   - Persistence: The library provides ways to maintain state and persistence in LLM-based applications.

4. Use Cases:
   LangGraph can be used for various applications, including:
   - Conversational agents
   - Complex task automation
   - Custom LLM-backed experiences

5. Integration:
   LangGraph works in conjunction with LangSmith, another tool by LangChain, to provide an out-of-the-box solution for building complex, production-ready features with LLMs.

6. Significance:
   LangGraph is described as setting the foundation for building and scaling AI workloads. It's positioned as a key tool in the next chapter of LLM-based application development, particularly in the realm of agentic AI.

7. Availability:
   LangGraph is open-source and available on GitHub, which suggests that developers can access and contribute to its codebase.

8. Comparison to Other Frameworks:
   LangGraph is noted to offer unique benefits compared to other LLM frameworks, particularly in its ability to handle cycles, provide controllability, and maintain persistence.

LangGraph appears to be a significant tool in the evolving landscape of LLM-based application development, offering developers new ways to create more complex, stateful, and interactive AI systems.
Goodbye!
恭喜! 您已经在langgraph中创建了一个会话代理,该代理可以在需要时使用搜索引擎检索更新的信息。现在它可以处理更广泛的用户查询。要检查您的代理刚刚执行的所有步骤,请查看这个LangSmith跟踪

我们的聊天机器人仍然无法自主记住过去的交互,这限制了它进行连贯的多轮对话的能力。在下一部分中,我们将添加**记忆**来解决这个问题。

我们在此部分创建的图的完整代码如下所示,用预构建的ToolNode替换我们的BasicToolNode,并用预构建的tools_condition替换我们的route_tools条件。

完整代码

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage
from typing_extensions import TypedDict

from langgraph.graph import StateGraph
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


tool = TavilySearchResults(max_results=2)
tools = [tool]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    return {"messages": [llm_with_tools.invoke(state["messages"])]}


graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
# 每当调用工具时,我们都会返回到聊天机器人以决定下一步
graph_builder.add_edge("tools", "chatbot")
graph_builder.set_entry_point("chatbot")
graph = graph_builder.compile()
API Reference: ChatAnthropic | TavilySearchResults | BaseMessage | StateGraph | add_messages | ToolNode | tools_condition

第3部分:为聊天机器人添加内存

我们的聊天机器人现在可以使用工具来回答用户的问题,但它无法记住之前交互的上下文。这限制了它进行连贯的多轮对话的能力。

LangGraph 通过 持久检查点 来解决这个问题。如果您在编译图时提供了一个 checkpointer,并且在调用图时提供了一个 thread_id,LangGraph 将自动在每一步后保存状态。当您使用相同的 thread_id 再次调用图时,图将加载其保存的状态,从而使聊天机器人可以从上次中断的地方继续。

我们将在后面看到,检查点 的功能远比简单的聊天记忆强大得多——它可以让您在任何时候保存和恢复复杂的状态,以实现错误恢复、人机交互工作流、时间旅行交互等功能。但在我们过于超前之前,让我们添加检查点以支持多轮对话。

首先,创建一个 MemorySaver 检查点。

from langgraph.checkpoint.memory import MemorySaver

memory = MemorySaver()

API Reference: MemorySaver

注意 我们使用的是内存中的检查点。这在教程中很方便(它将所有内容都保存在内存中)。但在生产应用中,你可能会将其改为使用 SqliteSaverPostgresSaver 并连接到自己的数据库。

接下来定义图。既然你已经构建了自己的 BasicToolNode,我们将用 LangGraph 的预构建 ToolNodetools_condition 来替换它,因为这些可以做一些很好的事情,比如并行 API 执行。除此之外,以下内容都来自第二部分。

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage
from typing_extensions import TypedDict

from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


tool = TavilySearchResults(max_results=2)
tools = [tool]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    return {"messages": [llm_with_tools.invoke(state["messages"])]}


graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
# Any time a tool is called, we return to the chatbot to decide the next step
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

API Reference: ChatAnthropic | TavilySearchResults | BaseMessage | StateGraph | START | END | add_messages | ToolNode | tools_condition

最后,使用提供的检查点编译图。

graph = graph_builder.compile(checkpointer=memory)

请注意,自第二部分以来,图的连通性没有发生变化。我们所做的只是在图遍历每个节点的过程中对State进行检查点记录。

from IPython.display import Image, display

try:
    display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
    # This requires some extra dependencies and is optional
    pass

现在你可以与你的机器人互动了!首先,选择一个线程作为此次对话的键。

config = {"configurable": {"thread_id": "1"}}

接下来,调用你的聊天机器人。

user_input = "Hi there! My name is Will."

# The config is the **second positional argument** to stream() or invoke()!
events = graph.stream(
    {"messages": [{"role": "user", "content": user_input}]},
    config,
    stream_mode="values",
)
for event in events:
    event["messages"][-1].pretty_print()
================================ Human Message =================================

Hi there! My name is Will.
================================== Ai Message ==================================

Hello Will! It's nice to meet you. How can I assist you today? Is there anything specific you'd like to know or discuss?
注意: 在调用我们的图时,配置被提供为**第二个位置参数**。重要的是,它并没有嵌套在图的输入中 ({'messages': []})。

让我们再问一个问题:看看它是否还记得你的名字。

user_input = "Remember my name?"

# The config is the **second positional argument** to stream() or invoke()!
events = graph.stream(
    {"messages": [{"role": "user", "content": user_input}]},
    config,
    stream_mode="values",
)
for event in events:
    event["messages"][-1].pretty_print()
================================ Human Message =================================

Remember my name?
================================== Ai Message ==================================

Of course, I remember your name, Will. I always try to pay attention to important details that users share with me. Is there anything else you'd like to talk about or any questions you have? I'm here to help with a wide range of topics or tasks.
注意,我们并没有使用外部列表来管理内存:这一切都是由检查点处理器来处理的!你可以在这个LangSmith跟踪中查看完整的执行情况,了解具体发生了什么。

不相信吗?试试使用不同的配置。

# The only difference is we change the `thread_id` here to "2" instead of "1"
events = graph.stream(
    {"messages": [{"role": "user", "content": user_input}]},
    {"configurable": {"thread_id": "2"}},
    stream_mode="values",
)
for event in events:
    event["messages"][-1].pretty_print()
================================ Human Message =================================

Remember my name?
================================== Ai Message ==================================

I apologize, but I don't have any previous context or memory of your name. As an AI assistant, I don't retain information from past conversations. Each interaction starts fresh. Could you please tell me your name so I can address you properly in this conversation?
注意,我们所做的唯一更改是修改了配置中的thread_id。查看此调用的LangSmith跟踪以进行比较。

到目前为止,我们在两个不同的线程中创建了一些检查点。但是,检查点包含什么内容呢?要检查给定配置在任何时间点上的图的状态,请调用get_state(config)

snapshot = graph.get_state(config)
snapshot
StateSnapshot(values={'messages': [HumanMessage(content='Hi there! My name is Will.', additional_kwargs={}, response_metadata={}, id='8c1ca919-c553-4ebf-95d4-b59a2d61e078'), AIMessage(content="Hello Will! It's nice to meet you. How can I assist you today? Is there anything specific you'd like to know or discuss?", additional_kwargs={}, response_metadata={'id': 'msg_01WTQebPhNwmMrmmWojJ9KXJ', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 405, 'output_tokens': 32}}, id='run-58587b77-8c82-41e6-8a90-d62c444a261d-0', usage_metadata={'input_tokens': 405, 'output_tokens': 32, 'total_tokens': 437}), HumanMessage(content='Remember my name?', additional_kwargs={}, response_metadata={}, id='daba7df6-ad75-4d6b-8057-745881cea1ca'), AIMessage(content="Of course, I remember your name, Will. I always try to pay attention to important details that users share with me. Is there anything else you'd like to talk about or any questions you have? I'm here to help with a wide range of topics or tasks.", additional_kwargs={}, response_metadata={'id': 'msg_01E41KitY74HpENRgXx94vag', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 444, 'output_tokens': 58}}, id='run-ffeaae5c-4d2d-4ddb-bd59-5d5cbf2a5af8-0', usage_metadata={'input_tokens': 444, 'output_tokens': 58, 'total_tokens': 502})]}, next=(), config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1ef7d06e-93e0-6acc-8004-f2ac846575d2'}}, metadata={'source': 'loop', 'writes': {'chatbot': {'messages': [AIMessage(content="Of course, I remember your name, Will. I always try to pay attention to important details that users share with me. Is there anything else you'd like to talk about or any questions you have? I'm here to help with a wide range of topics or tasks.", additional_kwargs={}, response_metadata={'id': 'msg_01E41KitY74HpENRgXx94vag', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 444, 'output_tokens': 58}}, id='run-ffeaae5c-4d2d-4ddb-bd59-5d5cbf2a5af8-0', usage_metadata={'input_tokens': 444, 'output_tokens': 58, 'total_tokens': 502})]}}, 'step': 4, 'parents': {}}, created_at='2024-09-27T19:30:10.820758+00:00', parent_config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1ef7d06e-859f-6206-8003-e1bd3c264b8f'}}, tasks=())
snapshot.next  # (since the graph ended this turn, `next` is empty. If you fetch a state from within a graph invocation, next tells which node will execute next)
()

上述快照包含了当前的状态值、对应的配置以及待处理的next节点。在本例中,图已到达END状态,因此next为空。

恭喜! 您的聊天机器人现在可以借助LangGraph的检查点系统,在会话之间保持对话状态。这为更自然、更具情境性的交互提供了令人兴奋的可能性。LangGraph的检查点系统甚至可以处理**任意复杂的图状态**,这比简单的聊天记忆要更具表现力和强大得多。

在下一部分中,我们将向机器人引入人工监督,以处理需要指导或验证才能继续的情况。

请参阅下面的代码片段,以查看本节中的图。

完整代码

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage
from typing_extensions import TypedDict

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


tool = TavilySearchResults(max_results=2)
tools = [tool]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    return {"messages": [llm_with_tools.invoke(state["messages"])]}


graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.set_entry_point("chatbot")
memory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory)
API Reference: ChatAnthropic | TavilySearchResults | BaseMessage | MemorySaver | StateGraph | add_messages | ToolNode

第四部分:人机协作

代理可能不可靠,需要人类输入才能成功完成任务。同样,对于某些操作,您可能希望在运行之前要求人类批准,以确保一切按预期运行。

LangGraph的persistence层支持人机协作工作流,允许根据用户反馈暂停和恢复执行。此功能的主要接口是interrupt函数。在节点内部调用interrupt将暂停执行。可以通过传递一个Command来恢复执行,并与人类的新输入一起传递。interrupt在使用上类似于Python的内置input()函数,有一些注意事项。下面我们将演示一个示例。

首先,从第三部分的现有代码开始。我们将进行一个更改,即添加一个简单的human_assistance工具,使其可供聊天机器人使用。此工具使用interrupt从人类接收信息。

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.tools import tool
from typing_extensions import TypedDict

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition

from langgraph.types import Command, interrupt


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


@tool
def human_assistance(query: str) -> str:
    """Request assistance from a human."""
    human_response = interrupt({"query": query})
    return human_response["data"]


tool = TavilySearchResults(max_results=2)
tools = [tool, human_assistance]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    message = llm_with_tools.invoke(state["messages"])
    # Because we will be interrupting during tool execution,
    # we disable parallel tool calling to avoid repeating any
    # tool invocations when we resume.
    assert len(message.tool_calls) <= 1
    return {"messages": [message]}


graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

API Reference: ChatAnthropic | TavilySearchResults | tool | MemorySaver | StateGraph | START | END | add_messages | ToolNode | tools_condition | Command | interrupt


提示

查看人机协作部分的How-to指南,以获取更多关于人机协作工作流的示例,包括如何在执行之前审查和编辑工具调用


我们使用检查点器编译图,就像之前一样:

memory = MemorySaver()

graph = graph_builder.compile(checkpointer=memory)

可视化图后,我们恢复了与之前相同的布局。我们只是添加了一个工具!

from IPython.display import Image, display

try:
    display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
    # This requires some extra dependencies and is optional
    pass

现在让我们用一个问题来触发聊天机器人,从而激活新的human_assistance工具:

user_input = "I need some expert guidance for building an AI agent. Could you request assistance for me?"
config = {"configurable": {"thread_id": "1"}}

events = graph.stream(
    {"messages": [{"role": "user", "content": user_input}]},
    config,
    stream_mode="values",
)
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================ Human Message =================================

I need some expert guidance for building an AI agent. Could you request assistance for me?
================================== Ai Message ==================================

[{'text': "Certainly! I'd be happy to request expert assistance for you regarding building an AI agent. To do this, I'll use the human_assistance function to relay your request. Let me do that for you now.", 'type': 'text'}, {'id': 'toolu_01ABUqneqnuHNuo1vhfDFQCW', 'input': {'query': 'A user is requesting expert guidance for building an AI agent. Could you please provide some expert advice or resources on this topic?'}, 'name': 'human_assistance', 'type': 'tool_use'}]
Tool Calls:
  human_assistance (toolu_01ABUqneqnuHNuo1vhfDFQCW)
 Call ID: toolu_01ABUqneqnuHNuo1vhfDFQCW
  Args:
    query: A user is requesting expert guidance for building an AI agent. Could you please provide some expert advice or resources on this topic?
聊天机器人生成了一个工具调用,但随后执行被中断!请注意,如果我们检查图的状态,会发现它在工具节点处停止了:

snapshot = graph.get_state(config)
snapshot.next
('tools',)

让我们更仔细地看一下human_assistance工具:

@tool
def human_assistance(query: str) -> str:
    """请求来自人类的帮助。"""
    human_response = interrupt({"query": query})
    return human_response["data"]

与Python内置的input()函数类似,调用工具内部的interrupt将暂停执行。根据我们选择的检查点库,进度会被持久化。因此,如果我们使用Postgres进行持久化,只要数据库保持运行,我们就可以在任何时候恢复执行。在这里,我们使用了内存中的检查点库,因此只要Python内核在运行,我们就可以在任何时候恢复执行。

为了恢复执行,我们需要传递一个包含工具所需数据的Command对象。该数据的格式可以根据需要自定义。在这里,我们只需要一个包含键"data"的字典:

human_response = (
    "We, the experts are here to help! We'd recommend you check out LangGraph to build your agent."
    " It's much more reliable and extensible than simple autonomous agents."
)

human_command = Command(resume={"data": human_response})

events = graph.stream(human_command, config, stream_mode="values")
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================== Ai Message ==================================

[{'text': "Certainly! I'd be happy to request expert assistance for you regarding building an AI agent. To do this, I'll use the human_assistance function to relay your request. Let me do that for you now.", 'type': 'text'}, {'id': 'toolu_01ABUqneqnuHNuo1vhfDFQCW', 'input': {'query': 'A user is requesting expert guidance for building an AI agent. Could you please provide some expert advice or resources on this topic?'}, 'name': 'human_assistance', 'type': 'tool_use'}]
Tool Calls:
  human_assistance (toolu_01ABUqneqnuHNuo1vhfDFQCW)
 Call ID: toolu_01ABUqneqnuHNuo1vhfDFQCW
  Args:
    query: A user is requesting expert guidance for building an AI agent. Could you please provide some expert advice or resources on this topic?
================================= Tool Message =================================
Name: human_assistance

We, the experts are here to help! We'd recommend you check out LangGraph to build your agent. It's much more reliable and extensible than simple autonomous agents.
================================== Ai Message ==================================

Thank you for your patience. I've received some expert advice regarding your request for guidance on building an AI agent. Here's what the experts have suggested:

The experts recommend that you look into LangGraph for building your AI agent. They mention that LangGraph is a more reliable and extensible option compared to simple autonomous agents.

LangGraph is likely a framework or library designed specifically for creating AI agents with advanced capabilities. Here are a few points to consider based on this recommendation:

1. Reliability: The experts emphasize that LangGraph is more reliable than simpler autonomous agent approaches. This could mean it has better stability, error handling, or consistent performance.

2. Extensibility: LangGraph is described as more extensible, which suggests that it probably offers a flexible architecture that allows you to easily add new features or modify existing ones as your agent's requirements evolve.

3. Advanced capabilities: Given that it's recommended over "simple autonomous agents," LangGraph likely provides more sophisticated tools and techniques for building complex AI agents.

To get started with LangGraph, you might want to:

1. Search for the official LangGraph documentation or website to learn more about its features and how to use it.
2. Look for tutorials or guides specifically focused on building AI agents with LangGraph.
3. Check if there are any community forums or discussion groups where you can ask questions and get support from other developers using LangGraph.

If you'd like more specific information about LangGraph or have any questions about this recommendation, please feel free to ask, and I can request further assistance from the experts.
我们的输入已被接收并作为工具消息处理。查看此调用的LangSmith跟踪以查看上述调用中执行的确切工作。请注意,状态在第一步中加载,以便我们的聊天机器人可以从上次中断的地方继续。

恭喜! 您使用了一个中断来为聊天机器人添加了人机交互执行,允许在需要时进行人工监督和干预。这为您使用AI系统创建的潜在UI打开了新的可能性。由于我们已经添加了一个**检查点器**,只要底层持久层正在运行,图形可以无限期暂停,并在任何时候恢复,就好像什么也没有发生一样。

人机交互工作流使各种新的工作流和用户体验成为可能。查看本节中的如何指南,以获取更多关于人机交互工作流的示例,包括如何审查和编辑工具调用在执行之前。

完整代码

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.tools import tool
from typing_extensions import TypedDict

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.types import Command, interrupt


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


@tool
def human_assistance(query: str) -> str:
    """请求来自人类的帮助。"""
    human_response = interrupt({"query": query})
    return human_response["data"]


tool = TavilySearchResults(max_results=2)
tools = [tool, human_assistance]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    message = llm_with_tools.invoke(state["messages"])
    assert(len(message.tool_calls) <= 1)
    return {"messages": [message]}


graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

memory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory)
API Reference: ChatAnthropic | TavilySearchResults | tool | MemorySaver | StateGraph | START | END | add_messages | ToolNode | tools_condition | Command | interrupt

第5部分:自定义状态

到目前为止,我们依赖于一个简单的状态,该状态只有一个条目——消息列表。你可以用这种简单的状态做很多事情,但如果你想定义复杂的行为而不依赖于消息列表,你可以向状态中添加额外的字段。在这里,我们将演示一个新的场景,在这个场景中,聊天机器人使用其搜索工具查找特定信息,并将其转发给人类进行审查。让我们让聊天机器人研究某个实体的生日。我们将向状态中添加namebirthday键:

from typing import Annotated

from typing_extensions import TypedDict

from langgraph.graph.message import add_messages


class State(TypedDict):
    messages: Annotated[list, add_messages]
    name: str
    birthday: str

API Reference: add_messages

将这些信息添加到状态中,使其可以轻松地被其他图节点(例如,一个下游节点,它存储或处理这些信息)以及图的持久层访问。

在这里,我们将在我们的human_assistance工具内部填充状态键。这允许一个人在信息存储到状态之前进行审查。这次我们将再次使用Command,以从我们的工具内部发出状态更新。了解更多关于Command的使用场景此处

from langchain_core.messages import ToolMessage
from langchain_core.tools import InjectedToolCallId, tool

from langgraph.types import Command, interrupt


@tool
# Note that because we are generating a ToolMessage for a state update, we
# generally require the ID of the corresponding tool call. We can use
# LangChain's InjectedToolCallId to signal that this argument should not
# be revealed to the model in the tool's schema.
def human_assistance(
    name: str, birthday: str, tool_call_id: Annotated[str, InjectedToolCallId]
) -> str:
    """Request assistance from a human."""
    human_response = interrupt(
        {
            "question": "Is this correct?",
            "name": name,
            "birthday": birthday,
        },
    )
    # If the information is correct, update the state as-is.
    if human_response.get("correct", "").lower().startswith("y"):
        verified_name = name
        verified_birthday = birthday
        response = "Correct"
    # Otherwise, receive information from the human reviewer.
    else:
        verified_name = human_response.get("name", name)
        verified_birthday = human_response.get("birthday", birthday)
        response = f"Made a correction: {human_response}"

    # This time we explicitly update the state with a ToolMessage inside
    # the tool.
    state_update = {
        "name": verified_name,
        "birthday": verified_birthday,
        "messages": [ToolMessage(response, tool_call_id=tool_call_id)],
    }
    # We return a Command object in the tool to update our state.
    return Command(update=state_update)

API Reference: ToolMessage | tool | Command | interrupt

否则,我们的图的其余部分保持不变:

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.prebuilt import ToolNode, tools_condition


tool = TavilySearchResults(max_results=2)
tools = [tool, human_assistance]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    message = llm_with_tools.invoke(state["messages"])
    assert len(message.tool_calls) <= 1
    return {"messages": [message]}


graph_builder = StateGraph(State)
graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

memory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory)

API Reference: ChatAnthropic | TavilySearchResults | MemorySaver | StateGraph | START | END | ToolNode | tools_condition

让我们提示我们的应用程序查找LangGraph库的“生日”。我们将引导聊天机器人在获取所需信息后使用human_assistance工具。注意,在工具的参数中设置namebirthday,我们强制聊天机器人为这些字段生成建议。

user_input = (
    "Can you look up when LangGraph was released? "
    "When you have the answer, use the human_assistance tool for review."
)
config = {"configurable": {"thread_id": "1"}}

events = graph.stream(
    {"messages": [{"role": "user", "content": user_input}]},
    config,
    stream_mode="values",
)
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================ Human Message =================================

Can you look up when LangGraph was released? When you have the answer, use the human_assistance tool for review.
================================== Ai Message ==================================

[{'text': "Certainly! I'll start by searching for information about LangGraph's release date using the Tavily search function. Then, I'll use the human_assistance tool for review.", 'type': 'text'}, {'id': 'toolu_01JoXQPgTVJXiuma8xMVwqAi', 'input': {'query': 'LangGraph release date'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Tool Calls:
  tavily_search_results_json (toolu_01JoXQPgTVJXiuma8xMVwqAi)
 Call ID: toolu_01JoXQPgTVJXiuma8xMVwqAi
  Args:
    query: LangGraph release date
================================= Tool Message =================================
Name: tavily_search_results_json

[{"url": "https://blog.langchain.dev/langgraph-cloud/", "content": "We also have a new stable release of LangGraph. By LangChain 6 min read Jun 27, 2024 (Oct '24) Edit: Since the launch of LangGraph Cloud, we now have multiple deployment options alongside LangGraph Studio - which now fall under LangGraph Platform. LangGraph Cloud is synonymous with our Cloud SaaS deployment option."}, {"url": "https://changelog.langchain.com/announcements/langgraph-cloud-deploy-at-scale-monitor-carefully-iterate-boldly", "content": "LangChain - Changelog | ☁ 🚀 LangGraph Cloud: Deploy at scale, monitor LangChain LangSmith LangGraph LangChain LangSmith LangGraph LangChain LangSmith LangGraph LangChain Changelog Sign up for our newsletter to stay up to date DATE: The LangChain Team LangGraph LangGraph Cloud ☁ 🚀 LangGraph Cloud: Deploy at scale, monitor carefully, iterate boldly DATE: June 27, 2024 AUTHOR: The LangChain Team LangGraph Cloud is now in closed beta, offering scalable, fault-tolerant deployment for LangGraph agents. LangGraph Cloud also includes a new playground-like studio for debugging agent failure modes and quick iteration: Join the waitlist today for LangGraph Cloud. And to learn more, read our blog post announcement or check out our docs. Subscribe By clicking subscribe, you accept our privacy policy and terms and conditions."}]
================================== Ai Message ==================================

[{'text': "Based on the search results, it appears that LangGraph was already in existence before June 27, 2024, when LangGraph Cloud was announced. However, the search results don't provide a specific release date for the original LangGraph. \n\nGiven this information, I'll use the human_assistance tool to review and potentially provide more accurate information about LangGraph's initial release date.", 'type': 'text'}, {'id': 'toolu_01JDQAV7nPqMkHHhNs3j3XoN', 'input': {'name': 'Assistant', 'birthday': '2023-01-01'}, 'name': 'human_assistance', 'type': 'tool_use'}]
Tool Calls:
  human_assistance (toolu_01JDQAV7nPqMkHHhNs3j3XoN)
 Call ID: toolu_01JDQAV7nPqMkHHhNs3j3XoN
  Args:
    name: Assistant
    birthday: 2023-01-01
我们再次在human_assistance工具中触发了interrupt。在这种情况下,聊天机器人未能正确识别日期,因此我们可以提供正确的日期:

human_command = Command(
    resume={
        "name": "LangGraph",
        "birthday": "Jan 17, 2024",
    },
)

events = graph.stream(human_command, config, stream_mode="values")
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================== Ai Message ==================================

[{'text': "Based on the search results, it appears that LangGraph was already in existence before June 27, 2024, when LangGraph Cloud was announced. However, the search results don't provide a specific release date for the original LangGraph. \n\nGiven this information, I'll use the human_assistance tool to review and potentially provide more accurate information about LangGraph's initial release date.", 'type': 'text'}, {'id': 'toolu_01JDQAV7nPqMkHHhNs3j3XoN', 'input': {'name': 'Assistant', 'birthday': '2023-01-01'}, 'name': 'human_assistance', 'type': 'tool_use'}]
Tool Calls:
  human_assistance (toolu_01JDQAV7nPqMkHHhNs3j3XoN)
 Call ID: toolu_01JDQAV7nPqMkHHhNs3j3XoN
  Args:
    name: Assistant
    birthday: 2023-01-01
================================= Tool Message =================================
Name: human_assistance

Made a correction: {'name': 'LangGraph', 'birthday': 'Jan 17, 2024'}
================================== Ai Message ==================================

Thank you for the human assistance. I can now provide you with the correct information about LangGraph's release date.

LangGraph was initially released on January 17, 2024. This information comes from the human assistance correction, which is more accurate than the search results I initially found.

To summarize:
1. LangGraph's original release date: January 17, 2024
2. LangGraph Cloud announcement: June 27, 2024

It's worth noting that LangGraph had been in development and use for some time before the LangGraph Cloud announcement, but the official initial release of LangGraph itself was on January 17, 2024.
请注意,这些字段现在反映在状态中:

snapshot = graph.get_state(config)

{k: v for k, v in snapshot.values.items() if k in ("name", "birthday")}
{'name': 'LangGraph', 'birthday': 'Jan 17, 2024'}

这使得它们可以轻松地被下游节点访问(例如,进一步处理或存储这些信息的节点)。

手动更新状态

LangGraph 提供了对应用程序状态的高度控制。例如,在任何时刻(包括中断时),我们都可以手动覆盖一个键,使用 graph.update_state 方法:

graph.update_state(config, {"name": "LangGraph (library)"})
{'configurable': {'thread_id': '1',
  'checkpoint_ns': '',
  'checkpoint_id': '1efd4ec5-cf69-6352-8006-9278f1730162'}}

如果我们调用graph.get_state,我们可以看到新的值已经被反映出来:

snapshot = graph.get_state(config)

{k: v for k, v in snapshot.values.items() if k in ("name", "birthday")}
{'name': 'LangGraph (library)', 'birthday': 'Jan 17, 2024'}

手动状态更新甚至会生成跟踪在LangSmith中。如果需要,它们也可以用于控制人机交互的工作流,如此指南中所述。通常建议使用interrupt函数,因为它允许数据在人机交互中独立于状态更新进行传输。

恭喜! 您已将自定义键添加到状态中,以支持更复杂的工作流,并学会了如何从工具内部生成状态更新。

我们即将完成教程,但在结束之前,我们还想回顾一下将检查点状态更新连接起来的一个概念。

本节的代码如下所示,供您参考。

完整代码

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import ToolMessage
from langchain_core.tools import InjectedToolCallId, tool
from typing_extensions import TypedDict

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.types import Command, interrupt



class State(TypedDict):
    messages: Annotated[list, add_messages]
    name: str
    birthday: str


@tool
def human_assistance(
    name: str, birthday: str, tool_call_id: Annotated[str, InjectedToolCallId]
) -> str:
    """请求人类的帮助。"""
    human_response = interrupt(
        {
            "question": "这是正确的吗?",
            "name": name,
            "birthday": birthday,
        },
    )
    if human_response.get("correct", "").lower().startswith("y"):
        verified_name = name
        verified_birthday = birthday
        response = "正确"
    else:
        verified_name = human_response.get("name", name)
        verified_birthday = human_response.get("birthday", birthday)
        response = f"进行了更正:{human_response}"

    state_update = {
        "name": verified_name,
        "birthday": verified_birthday,
        "messages": [ToolMessage(response, tool_call_id=tool_call_id)],
    }
    return Command(update=state_update)


tool = TavilySearchResults(max_results=2)
tools = [tool, human_assistance]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    message = llm_with_tools.invoke(state["messages"])
    assert(len(message.tool_calls) <= 1)
    return {"messages": [message]}


graph_builder = StateGraph(State)
graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

memory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory)
API Reference: ChatAnthropic | TavilySearchResults | ToolMessage | tool | MemorySaver | StateGraph | START | END | add_messages | ToolNode | tools_condition | Command | interrupt

第6部分:时间旅行

在典型的聊天机器人工作流程中,用户与机器人进行一次或多次交互以完成某个任务。在前面的部分中,我们看到了如何添加记忆和人机交互来检查我们的图状态并控制未来的响应。

但是,如果你想让用户从之前的响应开始并“分支”以探索不同的结果怎么办?或者如果你想让用户能够“回溯”你的助手的工作以修复某些错误或尝试不同的策略(在诸如自主软件工程师之类的应用程序中很常见)怎么办?

你可以使用LangGraph内置的“时间旅行”功能来创建这两种体验以及更多功能。

在本部分中,你将通过使用图的get_state_history方法获取检查点来“回溯”你的图。然后,你可以在时间线上的这个先前点继续执行。

为此,让我们使用来自第3部分的带有工具的简单聊天机器人:

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage
from typing_extensions import TypedDict

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


tool = TavilySearchResults(max_results=2)
tools = [tool]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    return {"messages": [llm_with_tools.invoke(state["messages"])]}


graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

memory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory)

API Reference: ChatAnthropic | TavilySearchResults | BaseMessage | MemorySaver | StateGraph | START | END | add_messages | ToolNode | tools_condition

让我们让图表进行几步操作。每一步都将被记录在其状态历史中:

config = {"configurable": {"thread_id": "1"}}
events = graph.stream(
    {
        "messages": [
            {
                "role": "user",
                "content": (
                    "I'm learning LangGraph. "
                    "Could you do some research on it for me?"
                ),
            },
        ],
    },
    config,
    stream_mode="values",
)
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================ Human Message =================================

I'm learning LangGraph. Could you do some research on it for me?
================================== Ai Message ==================================

[{'text': "Certainly! I'd be happy to research LangGraph for you. To get the most up-to-date and accurate information, I'll use the Tavily search engine to look this up. Let me do that for you now.", 'type': 'text'}, {'id': 'toolu_01BscbfJJB9EWJFqGrN6E54e', 'input': {'query': 'LangGraph latest information and features'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Tool Calls:
  tavily_search_results_json (toolu_01BscbfJJB9EWJFqGrN6E54e)
 Call ID: toolu_01BscbfJJB9EWJFqGrN6E54e
  Args:
    query: LangGraph latest information and features
================================= Tool Message =================================
Name: tavily_search_results_json

[{"url": "https://blockchain.news/news/langchain-new-features-upcoming-events-update", "content": "LangChain, a leading platform in the AI development space, has released its latest updates, showcasing new use cases and enhancements across its ecosystem. According to the LangChain Blog, the updates cover advancements in LangGraph Cloud, LangSmith's self-improving evaluators, and revamped documentation for LangGraph."}, {"url": "https://blog.langchain.dev/langgraph-platform-announce/", "content": "With these learnings under our belt, we decided to couple some of our latest offerings under LangGraph Platform. LangGraph Platform today includes LangGraph Server, LangGraph Studio, plus the CLI and SDK. ... we added features in LangGraph Server to deliver on a few key value areas. Below, we'll focus on these aspects of LangGraph Platform."}]
================================== Ai Message ==================================

Thank you for your patience. I've found some recent information about LangGraph for you. Let me summarize the key points:

1. LangGraph is part of the LangChain ecosystem, which is a leading platform in AI development.

2. Recent updates and features of LangGraph include:

   a. LangGraph Cloud: This seems to be a cloud-based version of LangGraph, though specific details weren't provided in the search results.

   b. LangGraph Platform: This is a newly introduced concept that combines several offerings:
      - LangGraph Server
      - LangGraph Studio
      - CLI (Command Line Interface)
      - SDK (Software Development Kit)

3. LangGraph Server: This component has received new features to enhance its value proposition, though the specific features weren't detailed in the search results.

4. LangGraph Studio: This appears to be a new tool in the LangGraph ecosystem, likely providing a graphical interface for working with LangGraph.

5. Documentation: The LangGraph documentation has been revamped, which should make it easier for learners like yourself to understand and use the tool.

6. Integration with LangSmith: While not directly part of LangGraph, LangSmith (another tool in the LangChain ecosystem) now features self-improving evaluators, which might be relevant if you're using LangGraph as part of a larger LangChain project.

As you're learning LangGraph, it would be beneficial to:

1. Check out the official LangChain documentation, especially the newly revamped LangGraph sections.
2. Explore the different components of the LangGraph Platform (Server, Studio, CLI, and SDK) to see which best fits your learning needs.
3. Keep an eye on LangGraph Cloud developments, as cloud-based solutions often provide an easier starting point for learners.
4. Consider how LangGraph fits into the broader LangChain ecosystem, especially its interaction with tools like LangSmith.

Is there any specific aspect of LangGraph you'd like to know more about? I'd be happy to do a more focused search on particular features or use cases.

events = graph.stream(
    {
        "messages": [
            {
                "role": "user",
                "content": (
                    "Ya that's helpful. Maybe I'll "
                    "build an autonomous agent with it!"
                ),
            },
        ],
    },
    config,
    stream_mode="values",
)
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================ Human Message =================================

Ya that's helpful. Maybe I'll build an autonomous agent with it!
================================== Ai Message ==================================

[{'text': "That's an exciting idea! Building an autonomous agent with LangGraph is indeed a great application of this technology. LangGraph is particularly well-suited for creating complex, multi-step AI workflows, which is perfect for autonomous agents. Let me gather some more specific information about using LangGraph for building autonomous agents.", 'type': 'text'}, {'id': 'toolu_01QWNHhUaeeWcGXvA4eHT7Zo', 'input': {'query': 'Building autonomous agents with LangGraph examples and tutorials'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Tool Calls:
  tavily_search_results_json (toolu_01QWNHhUaeeWcGXvA4eHT7Zo)
 Call ID: toolu_01QWNHhUaeeWcGXvA4eHT7Zo
  Args:
    query: Building autonomous agents with LangGraph examples and tutorials
================================= Tool Message =================================
Name: tavily_search_results_json

[{"url": "https://towardsdatascience.com/building-autonomous-multi-tool-agents-with-gemini-2-0-and-langgraph-ad3d7bd5e79d", "content": "Building Autonomous Multi-Tool Agents with Gemini 2.0 and LangGraph | by Youness Mansar | Jan, 2025 | Towards Data Science Building Autonomous Multi-Tool Agents with Gemini 2.0 and LangGraph A practical tutorial with full code examples for building and running multi-tool agents Towards Data Science LLMs are remarkable — they can memorize vast amounts of information, answer general knowledge questions, write code, generate stories, and even fix your grammar. In this tutorial, we are going to build a simple LLM agent that is equipped with four tools that it can use to answer a user’s question. This Agent will have the following specifications: Follow Published in Towards Data Science --------------------------------- Your home for data science and AI. Follow Follow Follow"}, {"url": "https://github.com/anmolaman20/Tools_and_Agents", "content": "GitHub - anmolaman20/Tools_and_Agents: This repository provides resources for building AI agents using Langchain and Langgraph. This repository provides resources for building AI agents using Langchain and Langgraph. This repository provides resources for building AI agents using Langchain and Langgraph. This repository serves as a comprehensive guide for building AI-powered agents using Langchain and Langgraph. It provides hands-on examples, practical tutorials, and resources for developers and AI enthusiasts to master building intelligent systems and workflows. AI Agent Development: Gain insights into creating intelligent systems that think, reason, and adapt in real time. This repository is ideal for AI practitioners, developers exploring language models, or anyone interested in building intelligent systems. This repository provides resources for building AI agents using Langchain and Langgraph."}]
================================== Ai Message ==================================

Great idea! Building an autonomous agent with LangGraph is definitely an exciting project. Based on the latest information I've found, here are some insights and tips for building autonomous agents with LangGraph:

1. Multi-Tool Agents: LangGraph is particularly well-suited for creating autonomous agents that can use multiple tools. This allows your agent to have a diverse set of capabilities and choose the right tool for each task.

2. Integration with Large Language Models (LLMs): You can combine LangGraph with powerful LLMs like Gemini 2.0 to create more intelligent and capable agents. The LLM can serve as the "brain" of your agent, making decisions and generating responses.

3. Workflow Management: LangGraph excels at managing complex, multi-step AI workflows. This is crucial for autonomous agents that need to break down tasks into smaller steps and execute them in the right order.

4. Practical Tutorials Available: There are tutorials available that provide full code examples for building and running multi-tool agents. These can be incredibly helpful as you start your project.

5. Langchain Integration: LangGraph is often used in conjunction with Langchain. This combination provides a powerful framework for building AI agents, offering features like memory management, tool integration, and prompt management.

6. GitHub Resources: There are repositories available (like the one by anmolaman20) that provide comprehensive resources for building AI agents using Langchain and LangGraph. These can be valuable references as you develop your agent.

7. Real-time Adaptation: LangGraph allows you to create agents that can think, reason, and adapt in real-time, which is crucial for truly autonomous behavior.

8. Customization: You can equip your agent with specific tools tailored to your use case. For example, you might include tools for web searching, data analysis, or interacting with specific APIs.

To get started with your autonomous agent project:

1. Familiarize yourself with LangGraph's documentation and basic concepts.
2. Look into tutorials that specifically deal with building autonomous agents, like the one mentioned from Towards Data Science.
3. Decide on the specific capabilities you want your agent to have and identify the tools it will need.
4. Start with a simple agent and gradually add complexity as you become more comfortable with the framework.
5. Experiment with different LLMs to find the one that works best for your use case.
6. Pay attention to how you structure the agent's decision-making process and workflow.
7. Don't forget to implement proper error handling and safety measures, especially if your agent will be interacting with external systems or making important decisions.

Building an autonomous agent is an iterative process, so be prepared to refine and improve your agent over time. Good luck with your project! If you need any more specific information as you progress, feel free to ask.
现在我们让代理走了几步之后,可以回放完整的状态历史记录,以查看发生的所有事情。

to_replay = None
for state in graph.get_state_history(config):
    print("Num Messages: ", len(state.values["messages"]), "Next: ", state.next)
    print("-" * 80)
    if len(state.values["messages"]) == 6:
        # We are somewhat arbitrarily selecting a specific state based on the number of chat messages in the state.
        to_replay = state
Num Messages:  8 Next:  ()
--------------------------------------------------------------------------------
Num Messages:  7 Next:  ('chatbot',)
--------------------------------------------------------------------------------
Num Messages:  6 Next:  ('tools',)
--------------------------------------------------------------------------------
Num Messages:  5 Next:  ('chatbot',)
--------------------------------------------------------------------------------
Num Messages:  4 Next:  ('__start__',)
--------------------------------------------------------------------------------
Num Messages:  4 Next:  ()
--------------------------------------------------------------------------------
Num Messages:  3 Next:  ('chatbot',)
--------------------------------------------------------------------------------
Num Messages:  2 Next:  ('tools',)
--------------------------------------------------------------------------------
Num Messages:  1 Next:  ('chatbot',)
--------------------------------------------------------------------------------
Num Messages:  0 Next:  ('__start__',)
--------------------------------------------------------------------------------
注意,检查点会在图的每一步都被保存。这__跨越调用__,因此你可以回溯整个线程的历史。我们选择了to_replay作为恢复的状态。这是在上面第二个图调用中的chatbot节点之后的状态。

从这一点恢复应该接下来调用**action**节点。

print(to_replay.next)
print(to_replay.config)
('tools',)
{'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1efd43e3-0c1f-6c4e-8006-891877d65740'}}
注意,检查点的配置(to_replay.config)包含一个checkpoint_id 时间戳。提供这个checkpoint_id值会让LangGraph的检查点加载器从该时间点加载状态。让我们在下面尝试一下:

# The `checkpoint_id` in the `to_replay.config` corresponds to a state we've persisted to our checkpointer.
for event in graph.stream(None, to_replay.config, stream_mode="values"):
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================== Ai Message ==================================

[{'text': "That's an exciting idea! Building an autonomous agent with LangGraph is indeed a great application of this technology. LangGraph is particularly well-suited for creating complex, multi-step AI workflows, which is perfect for autonomous agents. Let me gather some more specific information about using LangGraph for building autonomous agents.", 'type': 'text'}, {'id': 'toolu_01QWNHhUaeeWcGXvA4eHT7Zo', 'input': {'query': 'Building autonomous agents with LangGraph examples and tutorials'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Tool Calls:
  tavily_search_results_json (toolu_01QWNHhUaeeWcGXvA4eHT7Zo)
 Call ID: toolu_01QWNHhUaeeWcGXvA4eHT7Zo
  Args:
    query: Building autonomous agents with LangGraph examples and tutorials
================================= Tool Message =================================
Name: tavily_search_results_json

[{"url": "https://towardsdatascience.com/building-autonomous-multi-tool-agents-with-gemini-2-0-and-langgraph-ad3d7bd5e79d", "content": "Building Autonomous Multi-Tool Agents with Gemini 2.0 and LangGraph | by Youness Mansar | Jan, 2025 | Towards Data Science Building Autonomous Multi-Tool Agents with Gemini 2.0 and LangGraph A practical tutorial with full code examples for building and running multi-tool agents Towards Data Science LLMs are remarkable — they can memorize vast amounts of information, answer general knowledge questions, write code, generate stories, and even fix your grammar. In this tutorial, we are going to build a simple LLM agent that is equipped with four tools that it can use to answer a user’s question. This Agent will have the following specifications: Follow Published in Towards Data Science --------------------------------- Your home for data science and AI. Follow Follow Follow"}, {"url": "https://github.com/anmolaman20/Tools_and_Agents", "content": "GitHub - anmolaman20/Tools_and_Agents: This repository provides resources for building AI agents using Langchain and Langgraph. This repository provides resources for building AI agents using Langchain and Langgraph. This repository provides resources for building AI agents using Langchain and Langgraph. This repository serves as a comprehensive guide for building AI-powered agents using Langchain and Langgraph. It provides hands-on examples, practical tutorials, and resources for developers and AI enthusiasts to master building intelligent systems and workflows. AI Agent Development: Gain insights into creating intelligent systems that think, reason, and adapt in real time. This repository is ideal for AI practitioners, developers exploring language models, or anyone interested in building intelligent systems. This repository provides resources for building AI agents using Langchain and Langgraph."}]
================================== Ai Message ==================================

Great idea! Building an autonomous agent with LangGraph is indeed an excellent way to apply and deepen your understanding of the technology. Based on the search results, I can provide you with some insights and resources to help you get started:

1. Multi-Tool Agents:
   LangGraph is well-suited for building autonomous agents that can use multiple tools. This allows your agent to have a variety of capabilities and choose the appropriate tool based on the task at hand.

2. Integration with Large Language Models (LLMs):
   There's a tutorial that specifically mentions using Gemini 2.0 (Google's LLM) with LangGraph to build autonomous agents. This suggests that LangGraph can be integrated with various LLMs, giving you flexibility in choosing the language model that best fits your needs.

3. Practical Tutorials:
   There are tutorials available that provide full code examples for building and running multi-tool agents. These can be invaluable as you start your project, giving you a concrete starting point and demonstrating best practices.

4. GitHub Resources:
   There's a GitHub repository (github.com/anmolaman20/Tools_and_Agents) that provides resources for building AI agents using both Langchain and Langgraph. This could be a great resource for code examples, tutorials, and understanding how LangGraph fits into the broader LangChain ecosystem.

5. Real-Time Adaptation:
   The resources mention creating intelligent systems that can think, reason, and adapt in real-time. This is a key feature of advanced autonomous agents and something you can aim for in your project.

6. Diverse Applications:
   The materials suggest that these techniques can be applied to various tasks, from answering questions to potentially more complex decision-making processes.

To get started with your autonomous agent project using LangGraph, you might want to:

1. Review the tutorials mentioned, especially those with full code examples.
2. Explore the GitHub repository for hands-on examples and resources.
3. Decide on the specific tasks or capabilities you want your agent to have.
4. Choose an LLM to integrate with LangGraph (like GPT, Gemini, or others).
5. Start with a simple agent that uses one or two tools, then gradually expand its capabilities.
6. Implement decision-making logic to help your agent choose between different tools or actions.
7. Test your agent thoroughly with various inputs and scenarios to ensure robust performance.

Remember, building an autonomous agent is an iterative process. Start simple and gradually increase complexity as you become more comfortable with LangGraph and its capabilities.

Would you like more information on any specific aspect of building your autonomous agent with LangGraph?
注意,图从**action**节点恢复了执行。你可以通过查看上方打印的第一个值是我们的搜索引擎工具的响应来判断这一点。

**恭喜!**你现在已经在LangGraph中使用了时光旅行检查点遍历。能够回溯并探索替代路径为调试、实验和交互式应用程序打开了一个充满可能性的世界。

下一步

通过探索部署和高级功能来进一步您的旅程:

服务器快速入门

LangGraph 云

LangGraph 框架

LangGraph 平台

通过以下资源扩展您的知识:

Comments