Skip to content

🚀 LangGraph 快速入门

在本教程中,我们将在 LangGraph 中构建一个支持聊天机器人,它可以:

通过搜索网络回答常见问题在多次调用中保持对话状态将复杂查询转交给人工审核使用自定义状态来控制其行为回溯并探索其他对话路径

我们将从一个**基本聊天机器人**开始,逐步添加更复杂的功能,并在此过程中介绍 LangGraph 的关键概念。让我们开始吧!🌟

环境设置

首先,安装所需的软件包并配置你的环境:

%%capture --no-stderr
%pip install -U langgraph langsmith langchain_anthropic
import getpass
import os


def _set_env(var: str):
    if not os.environ.get(var):
        os.environ[var] = getpass.getpass(f"{var}: ")


_set_env("ANTHROPIC_API_KEY")

为 LangGraph 开发设置 LangSmith

注册 LangSmith 以快速发现问题并提升你的 LangGraph 项目的性能。LangSmith 允许你使用跟踪数据来调试、测试和监控使用 LangGraph 构建的大语言模型应用程序 — 点击 此处 了解更多关于如何开始使用的信息。

第一部分:构建一个基础聊天机器人

我们将首先使用 LangGraph 创建一个简单的聊天机器人。这个聊天机器人将直接响应用户消息。虽然简单,但它将阐释使用 LangGraph 进行构建的核心概念。在本节结束时,你将构建出一个基本的聊天机器人。

首先创建一个 StateGraphStateGraph 对象将我们的聊天机器人的结构定义为一个“状态机”。我们将添加 nodes 来表示大语言模型(LLM)以及我们的聊天机器人可以调用的函数,并添加 edges 来指定机器人应如何在这些函数之间进行转换。

from typing import Annotated

from typing_extensions import TypedDict

from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages


class State(TypedDict):
    # Messages have the type "list". The `add_messages` function
    # in the annotation defines how this state key should be updated
    # (in this case, it appends messages to the list, rather than overwriting them)
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)

我们的图现在可以处理两项关键任务:

  1. 每个 节点 可以接收当前的 状态 作为输入,并输出对该状态的更新。
  2. 由于使用了 Annotated 语法搭配预构建的 add_messages 函数,对 消息 的更新将追加到现有列表中,而不是覆盖它。

概念

在定义图时,第一步是定义其 状态状态 包括图的架构以及处理状态更新的 归约函数。在我们的示例中,状态 是一个 TypedDict,有一个键:messagesadd_messages 归约函数用于将新消息追加到列表中,而不是覆盖它。没有归约注解的键将覆盖先前的值。在 本指南 中了解更多关于状态、归约函数及相关概念的信息。


接下来,添加一个 “聊天机器人” 节点。节点代表工作单元。它们通常是常规的 Python 函数。

from langchain_anthropic import ChatAnthropic

llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")


def chatbot(state: State):
    return {"messages": [llm.invoke(state["messages"])]}


# The first argument is the unique node name
# The second argument is the function or object that will be called whenever
# the node is used.
graph_builder.add_node("chatbot", chatbot)

注意 chatbot 节点函数是如何将当前的 State 作为输入,并返回一个字典的,该字典在键 “messages” 下包含一个更新后的 messages 列表。这是所有 LangGraph 节点函数的基本模式。

我们的 State 中的 add_messages 函数会将大语言模型(LLM)的响应消息追加到状态中已有的任何消息之后。

接下来,添加一个 entry 点。这会告诉我们的图 每次运行时从哪里开始工作

graph_builder.add_edge(START, "chatbot")

同样地,设置一个 finish 点。这会指示图 “任何时候运行到这个节点,就可以退出”

graph_builder.add_edge("chatbot", END)

最后,我们需要能够运行我们的图。为此,在图构建器上调用 “compile()”。这将创建一个 “CompiledGraph”,我们可以使用它对我们的状态进行调用。

graph = graph_builder.compile()

你可以使用 get_graph 方法和某个 “draw” 方法(如 draw_asciidraw_png)来可视化图形。每个 draw 方法都需要额外的依赖项。

from IPython.display import Image, display

try:
    display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
    # This requires some extra dependencies and is optional
    pass

现在让我们运行这个聊天机器人吧!

提示: 你可以随时通过输入 “quit”、“exit” 或 “q” 来退出聊天循环。

def stream_graph_updates(user_input: str):
    for event in graph.stream({"messages": [{"role": "user", "content": user_input}]}):
        for value in event.values():
            print("Assistant:", value["messages"][-1].content)


while True:
    try:
        user_input = input("User: ")
        if user_input.lower() in ["quit", "exit", "q"]:
            print("Goodbye!")
            break
        stream_graph_updates(user_input)
    except:
        # fallback if input() is not available
        user_input = "What do you know about LangGraph?"
        print("User: " + user_input)
        stream_graph_updates(user_input)
        break
Assistant: LangGraph is a library designed to help build stateful multi-agent applications using language models. It provides tools for creating workflows and state machines to coordinate multiple AI agents or language model interactions. LangGraph is built on top of LangChain, leveraging its components while adding graph-based coordination capabilities. It's particularly useful for developing more complex, stateful AI applications that go beyond simple query-response interactions.
Goodbye!
恭喜! 你已经使用 LangGraph 构建了你的第一个聊天机器人。这个机器人可以通过接收用户输入并使用大语言模型(LLM)生成回复来进行基本对话。你可以通过提供的链接查看上述调用的 LangSmith 追踪记录

不过,你可能已经注意到,该机器人的知识仅限于其训练数据中的内容。在下一部分,我们将添加一个网络搜索工具,以扩展机器人的知识并提升其能力。

以下是本节的完整代码供你参考:

完整代码

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from typing_extensions import TypedDict

from langgraph.graph import StateGraph
from langgraph.graph.message import add_messages


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")


def chatbot(state: State):
    return {"messages": [llm.invoke(state["messages"])]}


# 第一个参数是唯一的节点名称
# 第二个参数是每当使用该节点时将调用的函数或对象。
graph_builder.add_node("chatbot", chatbot)
graph_builder.set_entry_point("chatbot")
graph_builder.set_finish_point("chatbot")
graph = graph_builder.compile()

第二部分:🛠️ 用工具增强聊天机器人

为了处理我们的聊天机器人无法“凭记忆”回答的查询,我们将集成一个网络搜索工具。我们的机器人可以使用这个工具来查找相关信息并提供更好的回复。

要求

在开始之前,请确保你已经安装了必要的软件包并设置了 API 密钥:

首先,安装使用 Tavily 搜索引擎 所需的依赖项,并设置你的 TAVILY_API_KEY

%%capture --no-stderr
%pip install -U tavily-python langchain_community

_set_env("TAVILY_API_KEY")
TAVILY_API_KEY:  ········
接下来,定义工具:

from langchain_community.tools.tavily_search import TavilySearchResults

tool = TavilySearchResults(max_results=2)
tools = [tool]
tool.invoke("What's a 'node' in LangGraph?")

API Reference: TavilySearchResults

[{'url': 'https://medium.com/@cplog/introduction-to-langgraph-a-beginners-guide-14f9be027141',
  'content': 'Nodes: Nodes are the building blocks of your LangGraph. Each node represents a function or a computation step. You define nodes to perform specific tasks, such as processing input, making ...'},
 {'url': 'https://saksheepatil05.medium.com/demystifying-langgraph-a-beginner-friendly-dive-into-langgraph-concepts-5ffe890ddac0',
  'content': 'Nodes (Tasks): Nodes are like the workstations on the assembly line. Each node performs a specific task on the product. In LangGraph, nodes are Python functions that take the current state, do some work, and return an updated state. Next, we define the nodes, each representing a task in our sandwich-making process.'}]

这些结果是我们的聊天机器人可用于回答问题的页面摘要。

接下来,我们将开始定义我们的图。以下内容与**第一部分完全相同**,只是我们在大语言模型(LLM)上添加了 bind_tools。这能让大语言模型知道如果它想使用我们的搜索引擎,应采用的正确 JSON 格式。

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from typing_extensions import TypedDict

from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
# Modification: tell the LLM which tools it can call
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    return {"messages": [llm_with_tools.invoke(state["messages"])]}


graph_builder.add_node("chatbot", chatbot)

接下来,我们需要创建一个函数,以便在调用工具时实际运行这些工具。我们将通过把工具添加到一个新节点来实现这一点。

下面,我们实现了一个 BasicToolNode,它会检查状态中的最新消息,如果该消息包含 tool_calls 就调用工具。它依赖于大语言模型(LLM)的 tool_calling 支持,Anthropic、OpenAI、Google Gemini 以及许多其他大语言模型提供商都提供了这种支持。

稍后,我们将用 LangGraph 预构建的 工具节点 替换这个节点以加快速度,但先自己构建它会很有启发性。

import json

from langchain_core.messages import ToolMessage


class BasicToolNode:
    """A node that runs the tools requested in the last AIMessage."""

    def __init__(self, tools: list) -> None:
        self.tools_by_name = {tool.name: tool for tool in tools}

    def __call__(self, inputs: dict):
        if messages := inputs.get("messages", []):
            message = messages[-1]
        else:
            raise ValueError("No message found in input")
        outputs = []
        for tool_call in message.tool_calls:
            tool_result = self.tools_by_name[tool_call["name"]].invoke(
                tool_call["args"]
            )
            outputs.append(
                ToolMessage(
                    content=json.dumps(tool_result),
                    name=tool_call["name"],
                    tool_call_id=tool_call["id"],
                )
            )
        return {"messages": outputs}


tool_node = BasicToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)

API Reference: ToolMessage

添加工具节点后,我们可以定义 conditional_edges

回顾一下,**边**用于将控制流从一个节点路由到下一个节点。**条件边**通常包含 “if” 语句,根据当前图的状态路由到不同的节点。这些函数接收当前图的 state,并返回一个字符串或字符串列表,指示接下来要调用的节点。

下面,定义一个名为 route_tools 的路由函数,该函数检查聊天机器人输出中是否存在工具调用。通过调用 add_conditional_edges 将此函数提供给图,这会告诉图,每当 chatbot 节点完成时,检查此函数以确定下一步的走向。

如果存在工具调用,该条件将路由到 tools;如果不存在,则路由到 END

稍后,我们将用预构建的 tools_condition 来替换它,以使代码更简洁,但先自己实现可以让事情更清晰。

def route_tools(
    state: State,
):
    """
    Use in the conditional_edge to route to the ToolNode if the last message
    has tool calls. Otherwise, route to the end.
    """
    if isinstance(state, list):
        ai_message = state[-1]
    elif messages := state.get("messages", []):
        ai_message = messages[-1]
    else:
        raise ValueError(f"No messages found in input state to tool_edge: {state}")
    if hasattr(ai_message, "tool_calls") and len(ai_message.tool_calls) > 0:
        return "tools"
    return END


# The `tools_condition` function returns "tools" if the chatbot asks to use a tool, and "END" if
# it is fine directly responding. This conditional routing defines the main agent loop.
graph_builder.add_conditional_edges(
    "chatbot",
    route_tools,
    # The following dictionary lets you tell the graph to interpret the condition's outputs as a specific node
    # It defaults to the identity function, but if you
    # want to use a node named something else apart from "tools",
    # You can update the value of the dictionary to something else
    # e.g., "tools": "my_tools"
    {"tools": "tools", END: END},
)
# Any time a tool is called, we return to the chatbot to decide the next step
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")
graph = graph_builder.compile()

注意,条件边从单个节点开始。这告诉图“任何时候‘chatbot’节点运行时,如果它调用了工具,则转到‘tools’;如果它直接响应,则结束循环”。

与预构建的 tools_condition 一样,如果没有进行工具调用,我们的函数会返回 END 字符串。当图过渡到 END 时,它就没有更多任务要完成,并且会停止执行。因为该条件可以返回 END,所以这次我们不需要显式地设置 finish_point。我们的图已经有了结束的方式!

让我们将已构建的图可视化。以下函数运行时需要一些额外的依赖项,这些依赖项对于本教程来说并不重要。

from IPython.display import Image, display

try:
    display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
    # This requires some extra dependencies and is optional
    pass

现在我们可以向机器人询问其训练数据之外的问题。

while True:
    try:
        user_input = input("User: ")
        if user_input.lower() in ["quit", "exit", "q"]:
            print("Goodbye!")
            break

        stream_graph_updates(user_input)
    except:
        # fallback if input() is not available
        user_input = "What do you know about LangGraph?"
        print("User: " + user_input)
        stream_graph_updates(user_input)
        break
Assistant: [{'text': "To provide you with accurate and up-to-date information about LangGraph, I'll need to search for the latest details. Let me do that for you.", 'type': 'text'}, {'id': 'toolu_01Q588CszHaSvvP2MxRq9zRD', 'input': {'query': 'LangGraph AI tool information'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Assistant: [{"url": "https://www.langchain.com/langgraph", "content": "LangGraph sets the foundation for how we can build and scale AI workloads \u2014 from conversational agents, complex task automation, to custom LLM-backed experiences that 'just work'. The next chapter in building complex production-ready features with LLMs is agentic, and with LangGraph and LangSmith, LangChain delivers an out-of-the-box solution ..."}, {"url": "https://github.com/langchain-ai/langgraph", "content": "Overview. LangGraph is a library for building stateful, multi-actor applications with LLMs, used to create agent and multi-agent workflows. Compared to other LLM frameworks, it offers these core benefits: cycles, controllability, and persistence. LangGraph allows you to define flows that involve cycles, essential for most agentic architectures ..."}]
Assistant: Based on the search results, I can provide you with information about LangGraph:

1. Purpose:
   LangGraph is a library designed for building stateful, multi-actor applications with Large Language Models (LLMs). It's particularly useful for creating agent and multi-agent workflows.

2. Developer:
   LangGraph is developed by LangChain, a company known for its tools and frameworks in the AI and LLM space.

3. Key Features:
   - Cycles: LangGraph allows the definition of flows that involve cycles, which is essential for most agentic architectures.
   - Controllability: It offers enhanced control over the application flow.
   - Persistence: The library provides ways to maintain state and persistence in LLM-based applications.

4. Use Cases:
   LangGraph can be used for various applications, including:
   - Conversational agents
   - Complex task automation
   - Custom LLM-backed experiences

5. Integration:
   LangGraph works in conjunction with LangSmith, another tool by LangChain, to provide an out-of-the-box solution for building complex, production-ready features with LLMs.

6. Significance:
   LangGraph is described as setting the foundation for building and scaling AI workloads. It's positioned as a key tool in the next chapter of LLM-based application development, particularly in the realm of agentic AI.

7. Availability:
   LangGraph is open-source and available on GitHub, which suggests that developers can access and contribute to its codebase.

8. Comparison to Other Frameworks:
   LangGraph is noted to offer unique benefits compared to other LLM frameworks, particularly in its ability to handle cycles, provide controllability, and maintain persistence.

LangGraph appears to be a significant tool in the evolving landscape of LLM-based application development, offering developers new ways to create more complex, stateful, and interactive AI systems.
Goodbye!
恭喜! 你已经在 langgraph 中创建了一个对话代理,它可以在需要时使用搜索引擎来检索最新信息。现在,它可以处理更广泛的用户查询。要查看你的代理刚刚执行的所有步骤,请查看这个 LangSmith 追踪记录

我们的聊天机器人仍然无法自行记住过去的交互,这限制了它进行连贯多轮对话的能力。在下一部分,我们将添加 记忆 功能来解决这个问题。

我们在本节中创建的图的完整代码如下,将我们的 BasicToolNode 替换为预构建的 ToolNode,并将我们的 route_tools 条件替换为预构建的 tools_condition

完整代码

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage
from typing_extensions import TypedDict

from langgraph.graph import StateGraph
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


tool = TavilySearchResults(max_results=2)
tools = [tool]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    return {"messages": [llm_with_tools.invoke(state["messages"])]}


graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
# 任何时候调用工具后,我们都会回到聊天机器人来决定下一步
graph_builder.add_edge("tools", "chatbot")
graph_builder.set_entry_point("chatbot")
graph = graph_builder.compile()
API Reference: TavilySearchResults | BaseMessage

第三部分:为聊天机器人添加记忆功能

我们的聊天机器人现在可以使用工具来回答用户的问题了,但它无法记住之前交互的上下文。这限制了它进行连贯多轮对话的能力。

LangGraph 通过**持久化检查点机制**解决了这个问题。如果你在编译图时提供一个 checkpointer,并在调用图时提供一个 thread_id,LangGraph 会在每一步之后自动保存状态。当你再次使用相同的 thread_id 调用图时,图会加载其保存的状态,从而让聊天机器人能够从上次中断的地方继续对话。

我们稍后会看到,**检查点机制**比简单的聊天记忆功能强大得多——它允许你在任何时候保存和恢复复杂的状态,以进行错误恢复、人工介入的工作流、时光回溯式交互等等。但在我们深入探讨之前,让我们先添加检查点机制来实现多轮对话。

首先,创建一个 MemorySaver 检查点器。

from langgraph.checkpoint.memory import MemorySaver

memory = MemorySaver()

注意:我们正在使用内存检查点器。这在我们的教程中很方便(它将所有内容都保存在内存中)。在生产应用程序中,你可能会将其更改为使用 SqliteSaverPostgresSaver 并连接到你自己的数据库。

接下来定义图。既然你已经构建了自己的 BasicToolNode,我们将用 LangGraph 预构建的 ToolNodetools_condition 替换它,因为它们能实现一些很棒的功能,比如并行 API 执行。除此之外,以下内容均从第 2 部分复制而来。

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage
from typing_extensions import TypedDict

from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


tool = TavilySearchResults(max_results=2)
tools = [tool]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    return {"messages": [llm_with_tools.invoke(state["messages"])]}


graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
# Any time a tool is called, we return to the chatbot to decide the next step
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

API Reference: TavilySearchResults | BaseMessage

最后,使用提供的检查点保存器编译计算图。

graph = graph_builder.compile(checkpointer=memory)

请注意,自第 2 部分以来,图的连通性并未改变。我们所做的只是在图遍历每个节点时对 State 进行检查点操作。

from IPython.display import Image, display

try:
    display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
    # This requires some extra dependencies and is optional
    pass

现在你可以与你的机器人进行交互了!首先,选择一个线程作为本次对话的关键。

config = {"configurable": {"thread_id": "1"}}

接下来,调用你的聊天机器人。

user_input = "Hi there! My name is Will."

# The config is the **second positional argument** to stream() or invoke()!
events = graph.stream(
    {"messages": [{"role": "user", "content": user_input}]},
    config,
    stream_mode="values",
)
for event in events:
    event["messages"][-1].pretty_print()
================================ Human Message =================================

Hi there! My name is Will.
================================== Ai Message ==================================

Hello Will! It's nice to meet you. How can I assist you today? Is there anything specific you'd like to know or discuss?
注意: 在调用我们的图时,配置是作为**第二个位置参数**提供的。重要的是,它**不会**嵌套在图输入({'messages': []})中。

让我们追问一个问题:看看它是否记得你的名字。

user_input = "Remember my name?"

# The config is the **second positional argument** to stream() or invoke()!
events = graph.stream(
    {"messages": [{"role": "user", "content": user_input}]},
    config,
    stream_mode="values",
)
for event in events:
    event["messages"][-1].pretty_print()
================================ Human Message =================================

Remember my name?
================================== Ai Message ==================================

Of course, I remember your name, Will. I always try to pay attention to important details that users share with me. Is there anything else you'd like to talk about or any questions you have? I'm here to help with a wide range of topics or tasks.
注意,我们没有使用外部列表来管理内存:所有操作都由检查点器处理!你可以在这个 LangSmith 跟踪记录 中查看完整的执行过程,了解具体情况。

不相信我?试试使用不同的配置。

# The only difference is we change the `thread_id` here to "2" instead of "1"
events = graph.stream(
    {"messages": [{"role": "user", "content": user_input}]},
    {"configurable": {"thread_id": "2"}},
    stream_mode="values",
)
for event in events:
    event["messages"][-1].pretty_print()
================================ Human Message =================================

Remember my name?
================================== Ai Message ==================================

I apologize, but I don't have any previous context or memory of your name. As an AI assistant, I don't retain information from past conversations. Each interaction starts fresh. Could you please tell me your name so I can address you properly in this conversation?
注意,我们所做的**唯一**更改是修改了配置中的 thread_id。请查看此调用的 LangSmith 跟踪记录 进行对比。

到目前为止,我们已经在两个不同的线程中设置了几个检查点。但检查点包含哪些内容呢?若要随时检查给定配置下图形的 state,请调用 get_state(config)

snapshot = graph.get_state(config)
snapshot
StateSnapshot(values={'messages': [HumanMessage(content='Hi there! My name is Will.', additional_kwargs={}, response_metadata={}, id='8c1ca919-c553-4ebf-95d4-b59a2d61e078'), AIMessage(content="Hello Will! It's nice to meet you. How can I assist you today? Is there anything specific you'd like to know or discuss?", additional_kwargs={}, response_metadata={'id': 'msg_01WTQebPhNwmMrmmWojJ9KXJ', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 405, 'output_tokens': 32}}, id='run-58587b77-8c82-41e6-8a90-d62c444a261d-0', usage_metadata={'input_tokens': 405, 'output_tokens': 32, 'total_tokens': 437}), HumanMessage(content='Remember my name?', additional_kwargs={}, response_metadata={}, id='daba7df6-ad75-4d6b-8057-745881cea1ca'), AIMessage(content="Of course, I remember your name, Will. I always try to pay attention to important details that users share with me. Is there anything else you'd like to talk about or any questions you have? I'm here to help with a wide range of topics or tasks.", additional_kwargs={}, response_metadata={'id': 'msg_01E41KitY74HpENRgXx94vag', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 444, 'output_tokens': 58}}, id='run-ffeaae5c-4d2d-4ddb-bd59-5d5cbf2a5af8-0', usage_metadata={'input_tokens': 444, 'output_tokens': 58, 'total_tokens': 502})]}, next=(), config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1ef7d06e-93e0-6acc-8004-f2ac846575d2'}}, metadata={'source': 'loop', 'writes': {'chatbot': {'messages': [AIMessage(content="Of course, I remember your name, Will. I always try to pay attention to important details that users share with me. Is there anything else you'd like to talk about or any questions you have? I'm here to help with a wide range of topics or tasks.", additional_kwargs={}, response_metadata={'id': 'msg_01E41KitY74HpENRgXx94vag', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 444, 'output_tokens': 58}}, id='run-ffeaae5c-4d2d-4ddb-bd59-5d5cbf2a5af8-0', usage_metadata={'input_tokens': 444, 'output_tokens': 58, 'total_tokens': 502})]}}, 'step': 4, 'parents': {}}, created_at='2024-09-27T19:30:10.820758+00:00', parent_config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1ef7d06e-859f-6206-8003-e1bd3c264b8f'}}, tasks=())
snapshot.next  # (since the graph ended this turn, `next` is empty. If you fetch a state from within a graph invocation, next tells which node will execute next)
()

上面的快照包含当前状态值、相应的配置以及要处理的 next 节点。在我们的示例中,图已达到 END 状态,因此 next 为空。

恭喜! 得益于 LangGraph 的检查点系统,你的聊天机器人现在可以跨会话维护对话状态了。这为实现更自然、更具上下文感知的交互开辟了令人兴奋的可能性。LangGraph 的检查点功能甚至可以处理 任意复杂的图状态,这比简单的聊天记忆更具表现力和强大功能。

在下一部分,我们将为我们的机器人引入人工监督,以处理它在继续执行之前可能需要指导或验证的情况。

查看下面的代码片段,回顾本节中的图。

完整代码

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage
from typing_extensions import TypedDict

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


tool = TavilySearchResults(max_results=2)
tools = [tool]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    return {"messages": [llm_with_tools.invoke(state["messages"])]}


graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.set_entry_point("chatbot")
memory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory)
API Reference: TavilySearchResults | BaseMessage

第四部分:人工介入

智能体可能不可靠,可能需要人工输入才能成功完成任务。同样,对于某些操作,你可能希望在执行前获得人工批准,以确保一切按预期运行。

LangGraph 的持久化层支持人工介入的工作流,允许根据用户反馈暂停和恢复执行。此功能的主要接口是中断函数。在节点内部调用 interrupt 会暂停执行。通过传入一个命令,可以连同人类的新输入一起恢复执行。interrupt 在使用体验上类似于 Python 的内置函数 input()但有一些注意事项。下面我们展示一个示例。

首先,从第三部分的现有代码开始。我们将做一处更改,即添加一个简单的 human_assistance 工具供聊天机器人使用。这个工具使用 interrupt 从人类那里接收信息。

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.tools import tool
from typing_extensions import TypedDict

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition

from langgraph.types import Command, interrupt


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


@tool
def human_assistance(query: str) -> str:
    """Request assistance from a human."""
    human_response = interrupt({"query": query})
    return human_response["data"]


tool = TavilySearchResults(max_results=2)
tools = [tool, human_assistance]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    message = llm_with_tools.invoke(state["messages"])
    # Because we will be interrupting during tool execution,
    # we disable parallel tool calling to avoid repeating any
    # tool invocations when we resume.
    assert len(message.tool_calls) <= 1
    return {"messages": [message]}


graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

API Reference: TavilySearchResults | tool


Tip

查看操作指南中的人在回路部分,获取更多人在回路工作流的示例,包括如何在工具调用执行前进行审查和编辑


和之前一样,我们使用检查点器来编译图:

memory = MemorySaver()

graph = graph_builder.compile(checkpointer=memory)

将图可视化后,我们得到了与之前相同的布局。我们只是添加了一个工具!

from IPython.display import Image, display

try:
    display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
    # This requires some extra dependencies and is optional
    pass

现在,让我们用一个能调用新的 human_assistance 工具的问题来向聊天机器人提问:

user_input = "I need some expert guidance for building an AI agent. Could you request assistance for me?"
config = {"configurable": {"thread_id": "1"}}

events = graph.stream(
    {"messages": [{"role": "user", "content": user_input}]},
    config,
    stream_mode="values",
)
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================ Human Message =================================

I need some expert guidance for building an AI agent. Could you request assistance for me?
================================== Ai Message ==================================

[{'text': "Certainly! I'd be happy to request expert assistance for you regarding building an AI agent. To do this, I'll use the human_assistance function to relay your request. Let me do that for you now.", 'type': 'text'}, {'id': 'toolu_01ABUqneqnuHNuo1vhfDFQCW', 'input': {'query': 'A user is requesting expert guidance for building an AI agent. Could you please provide some expert advice or resources on this topic?'}, 'name': 'human_assistance', 'type': 'tool_use'}]
Tool Calls:
  human_assistance (toolu_01ABUqneqnuHNuo1vhfDFQCW)
 Call ID: toolu_01ABUqneqnuHNuo1vhfDFQCW
  Args:
    query: A user is requesting expert guidance for building an AI agent. Could you please provide some expert advice or resources on this topic?
聊天机器人生成了一个工具调用,但随后执行被中断了!请注意,如果我们检查图状态,会发现它在工具节点处停止了:

snapshot = graph.get_state(config)
snapshot.next
('tools',)

让我们更深入地了解一下 human_assistance 工具:

@tool
def human_assistance(query: str) -> str:
    """向人类请求协助。"""
    human_response = interrupt({"query": query})
    return human_response["data"]

与 Python 的内置 input() 函数类似,在工具内部调用 interrupt 会暂停执行。执行进度会根据我们选择的 检查点器 进行持久化存储 —— 因此,如果我们使用 Postgres 进行持久化存储,只要数据库处于运行状态,我们就可以随时恢复执行。这里我们使用的是内存检查点器进行持久化存储,所以只要 Python 内核在运行,我们就可以随时恢复执行。

要恢复执行,我们需要传递一个包含工具所需数据的 命令 对象。此数据的格式可以根据我们的需求进行自定义。在这里,我们只需要一个包含键 "data" 的字典:

human_response = (
    "We, the experts are here to help! We'd recommend you check out LangGraph to build your agent."
    " It's much more reliable and extensible than simple autonomous agents."
)

human_command = Command(resume={"data": human_response})

events = graph.stream(human_command, config, stream_mode="values")
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================== Ai Message ==================================

[{'text': "Certainly! I'd be happy to request expert assistance for you regarding building an AI agent. To do this, I'll use the human_assistance function to relay your request. Let me do that for you now.", 'type': 'text'}, {'id': 'toolu_01ABUqneqnuHNuo1vhfDFQCW', 'input': {'query': 'A user is requesting expert guidance for building an AI agent. Could you please provide some expert advice or resources on this topic?'}, 'name': 'human_assistance', 'type': 'tool_use'}]
Tool Calls:
  human_assistance (toolu_01ABUqneqnuHNuo1vhfDFQCW)
 Call ID: toolu_01ABUqneqnuHNuo1vhfDFQCW
  Args:
    query: A user is requesting expert guidance for building an AI agent. Could you please provide some expert advice or resources on this topic?
================================= Tool Message =================================
Name: human_assistance

We, the experts are here to help! We'd recommend you check out LangGraph to build your agent. It's much more reliable and extensible than simple autonomous agents.
================================== Ai Message ==================================

Thank you for your patience. I've received some expert advice regarding your request for guidance on building an AI agent. Here's what the experts have suggested:

The experts recommend that you look into LangGraph for building your AI agent. They mention that LangGraph is a more reliable and extensible option compared to simple autonomous agents.

LangGraph is likely a framework or library designed specifically for creating AI agents with advanced capabilities. Here are a few points to consider based on this recommendation:

1. Reliability: The experts emphasize that LangGraph is more reliable than simpler autonomous agent approaches. This could mean it has better stability, error handling, or consistent performance.

2. Extensibility: LangGraph is described as more extensible, which suggests that it probably offers a flexible architecture that allows you to easily add new features or modify existing ones as your agent's requirements evolve.

3. Advanced capabilities: Given that it's recommended over "simple autonomous agents," LangGraph likely provides more sophisticated tools and techniques for building complex AI agents.

To get started with LangGraph, you might want to:

1. Search for the official LangGraph documentation or website to learn more about its features and how to use it.
2. Look for tutorials or guides specifically focused on building AI agents with LangGraph.
3. Check if there are any community forums or discussion groups where you can ask questions and get support from other developers using LangGraph.

If you'd like more specific information about LangGraph or have any questions about this recommendation, please feel free to ask, and I can request further assistance from the experts.
我们已收到并将输入作为工具消息进行了处理。查看此调用的 LangSmith 跟踪记录,以了解上述调用中所执行的具体操作。请注意,在第一步中加载了状态,以便我们的聊天机器人可以从上次中断的位置继续运行。

恭喜! 你已使用 interrupt 为聊天机器人添加了人工介入执行功能,从而在需要时允许人工监督和干预。这为你使用 AI 系统创建潜在的用户界面提供了更多可能。由于我们已经添加了一个 检查点器,只要底层持久化层在运行,图就可以 无限期 暂停,并随时恢复运行,就像什么都没发生过一样。

人工介入工作流能够实现各种新的工作流和用户体验。查看操作指南的 此部分,了解更多人工介入工作流的示例,包括如何在工具调用 执行前进行审核和编辑

完整代码

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.tools import tool
from typing_extensions import TypedDict

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.types import Command, interrupt


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


@tool
def human_assistance(query: str) -> str:
    """Request assistance from a human."""
    human_response = interrupt({"query": query})
    return human_response["data"]


tool = TavilySearchResults(max_results=2)
tools = [tool, human_assistance]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    message = llm_with_tools.invoke(state["messages"])
    assert(len(message.tool_calls) <= 1)
    return {"messages": [message]}


graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

memory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory)
API Reference: TavilySearchResults | tool

第五部分:自定义状态

到目前为止,我们一直使用仅包含一个条目(消息列表)的简单状态。这个简单的状态能满足很多需求,但如果你想在不依赖消息列表的情况下定义复杂的行为,就可以向状态中添加额外的字段。在这里,我们将演示一个新场景,在该场景中,聊天机器人使用其搜索工具查找特定信息,并将这些信息转发给人工审核。让我们让聊天机器人去查询某个实体的生日。我们将在状态中添加 namebirthday 键:

from typing import Annotated

from typing_extensions import TypedDict

from langgraph.graph.message import add_messages


class State(TypedDict):
    messages: Annotated[list, add_messages]
    name: str
    birthday: str

将此信息添加到状态中,其他图节点(例如,存储或处理该信息的下游节点)以及图的持久化层都可以轻松访问该信息。

在这里,我们将在 human_assistance 工具内部填充状态键。这允许人工在信息存储到状态之前对其进行审核。我们将再次使用 Command,这次是从工具内部发出状态更新。有关 Command 的用例,请在此处阅读更多内容。

from langchain_core.messages import ToolMessage
from langchain_core.tools import InjectedToolCallId, tool

from langgraph.types import Command, interrupt


@tool
# Note that because we are generating a ToolMessage for a state update, we
# generally require the ID of the corresponding tool call. We can use
# LangChain's InjectedToolCallId to signal that this argument should not
# be revealed to the model in the tool's schema.
def human_assistance(
    name: str, birthday: str, tool_call_id: Annotated[str, InjectedToolCallId]
) -> str:
    """Request assistance from a human."""
    human_response = interrupt(
        {
            "question": "Is this correct?",
            "name": name,
            "birthday": birthday,
        },
    )
    # If the information is correct, update the state as-is.
    if human_response.get("correct", "").lower().startswith("y"):
        verified_name = name
        verified_birthday = birthday
        response = "Correct"
    # Otherwise, receive information from the human reviewer.
    else:
        verified_name = human_response.get("name", name)
        verified_birthday = human_response.get("birthday", birthday)
        response = f"Made a correction: {human_response}"

    # This time we explicitly update the state with a ToolMessage inside
    # the tool.
    state_update = {
        "name": verified_name,
        "birthday": verified_birthday,
        "messages": [ToolMessage(response, tool_call_id=tool_call_id)],
    }
    # We return a Command object in the tool to update our state.
    return Command(update=state_update)

API Reference: ToolMessage | InjectedToolCallId | tool

否则,我们图表的其余部分是相同的:

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.prebuilt import ToolNode, tools_condition


tool = TavilySearchResults(max_results=2)
tools = [tool, human_assistance]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    message = llm_with_tools.invoke(state["messages"])
    assert len(message.tool_calls) <= 1
    return {"messages": [message]}


graph_builder = StateGraph(State)
graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

memory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory)

API Reference: TavilySearchResults

让我们提示我们的应用程序查找 LangGraph 库的“诞生日期”。一旦聊天机器人获得所需信息,我们将引导它调用 human_assistance 工具。请注意,在工具的参数中设置 namebirthday 后,我们会迫使聊天机器人为这些字段生成建议。

user_input = (
    "Can you look up when LangGraph was released? "
    "When you have the answer, use the human_assistance tool for review."
)
config = {"configurable": {"thread_id": "1"}}

events = graph.stream(
    {"messages": [{"role": "user", "content": user_input}]},
    config,
    stream_mode="values",
)
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================ Human Message =================================

Can you look up when LangGraph was released? When you have the answer, use the human_assistance tool for review.
================================== Ai Message ==================================

[{'text': "Certainly! I'll start by searching for information about LangGraph's release date using the Tavily search function. Then, I'll use the human_assistance tool for review.", 'type': 'text'}, {'id': 'toolu_01JoXQPgTVJXiuma8xMVwqAi', 'input': {'query': 'LangGraph release date'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Tool Calls:
  tavily_search_results_json (toolu_01JoXQPgTVJXiuma8xMVwqAi)
 Call ID: toolu_01JoXQPgTVJXiuma8xMVwqAi
  Args:
    query: LangGraph release date
================================= Tool Message =================================
Name: tavily_search_results_json

[{"url": "https://blog.langchain.dev/langgraph-cloud/", "content": "We also have a new stable release of LangGraph. By LangChain 6 min read Jun 27, 2024 (Oct '24) Edit: Since the launch of LangGraph Cloud, we now have multiple deployment options alongside LangGraph Studio - which now fall under LangGraph Platform. LangGraph Cloud is synonymous with our Cloud SaaS deployment option."}, {"url": "https://changelog.langchain.com/announcements/langgraph-cloud-deploy-at-scale-monitor-carefully-iterate-boldly", "content": "LangChain - Changelog | ☁ 🚀 LangGraph Cloud: Deploy at scale, monitor LangChain LangSmith LangGraph LangChain LangSmith LangGraph LangChain LangSmith LangGraph LangChain Changelog Sign up for our newsletter to stay up to date DATE: The LangChain Team LangGraph LangGraph Cloud ☁ 🚀 LangGraph Cloud: Deploy at scale, monitor carefully, iterate boldly DATE: June 27, 2024 AUTHOR: The LangChain Team LangGraph Cloud is now in closed beta, offering scalable, fault-tolerant deployment for LangGraph agents. LangGraph Cloud also includes a new playground-like studio for debugging agent failure modes and quick iteration: Join the waitlist today for LangGraph Cloud. And to learn more, read our blog post announcement or check out our docs. Subscribe By clicking subscribe, you accept our privacy policy and terms and conditions."}]
================================== Ai Message ==================================

[{'text': "Based on the search results, it appears that LangGraph was already in existence before June 27, 2024, when LangGraph Cloud was announced. However, the search results don't provide a specific release date for the original LangGraph. \n\nGiven this information, I'll use the human_assistance tool to review and potentially provide more accurate information about LangGraph's initial release date.", 'type': 'text'}, {'id': 'toolu_01JDQAV7nPqMkHHhNs3j3XoN', 'input': {'name': 'Assistant', 'birthday': '2023-01-01'}, 'name': 'human_assistance', 'type': 'tool_use'}]
Tool Calls:
  human_assistance (toolu_01JDQAV7nPqMkHHhNs3j3XoN)
 Call ID: toolu_01JDQAV7nPqMkHHhNs3j3XoN
  Args:
    name: Assistant
    birthday: 2023-01-01
我们在 human_assistance 工具中再次遇到了 interrupt。在这种情况下,聊天机器人未能识别出正确的日期,因此我们可以提供该日期:

human_command = Command(
    resume={
        "name": "LangGraph",
        "birthday": "Jan 17, 2024",
    },
)

events = graph.stream(human_command, config, stream_mode="values")
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================== Ai Message ==================================

[{'text': "Based on the search results, it appears that LangGraph was already in existence before June 27, 2024, when LangGraph Cloud was announced. However, the search results don't provide a specific release date for the original LangGraph. \n\nGiven this information, I'll use the human_assistance tool to review and potentially provide more accurate information about LangGraph's initial release date.", 'type': 'text'}, {'id': 'toolu_01JDQAV7nPqMkHHhNs3j3XoN', 'input': {'name': 'Assistant', 'birthday': '2023-01-01'}, 'name': 'human_assistance', 'type': 'tool_use'}]
Tool Calls:
  human_assistance (toolu_01JDQAV7nPqMkHHhNs3j3XoN)
 Call ID: toolu_01JDQAV7nPqMkHHhNs3j3XoN
  Args:
    name: Assistant
    birthday: 2023-01-01
================================= Tool Message =================================
Name: human_assistance

Made a correction: {'name': 'LangGraph', 'birthday': 'Jan 17, 2024'}
================================== Ai Message ==================================

Thank you for the human assistance. I can now provide you with the correct information about LangGraph's release date.

LangGraph was initially released on January 17, 2024. This information comes from the human assistance correction, which is more accurate than the search results I initially found.

To summarize:
1. LangGraph's original release date: January 17, 2024
2. LangGraph Cloud announcement: June 27, 2024

It's worth noting that LangGraph had been in development and use for some time before the LangGraph Cloud announcement, but the official initial release of LangGraph itself was on January 17, 2024.
请注意,这些字段现在已反映在状态中:

snapshot = graph.get_state(config)

{k: v for k, v in snapshot.values.items() if k in ("name", "birthday")}
{'name': 'LangGraph', 'birthday': 'Jan 17, 2024'}

这使得下游节点(例如,进一步处理或存储信息的节点)能够轻松访问这些信息。

手动更新状态

LangGraph 对应用程序状态提供了高度的控制。例如,在任何时候(包括被中断时),我们可以使用 graph.update_state 手动覆盖一个键:

graph.update_state(config, {"name": "LangGraph (library)"})
{'configurable': {'thread_id': '1',
  'checkpoint_ns': '',
  'checkpoint_id': '1efd4ec5-cf69-6352-8006-9278f1730162'}}

如果我们调用 graph.get_state,可以看到新值已被反映出来:

snapshot = graph.get_state(config)

{k: v for k, v in snapshot.values.items() if k in ("name", "birthday")}
{'name': 'LangGraph (library)', 'birthday': 'Jan 17, 2024'}

手动状态更新甚至会在 LangSmith 中生成一个追踪记录。如果需要,它们还可以用于控制人在回路的工作流程,如本指南中所述。通常建议使用 interrupt 函数,因为它允许在人在回路的交互中独立于状态更新来传输数据。

恭喜! 你已经向状态中添加了自定义键以促进更复杂的工作流程,并学习了如何从工具内部生成状态更新。

本教程即将结束,但在结束之前,我们还想回顾一个将 检查点状态更新 联系起来的概念。

本节的代码复制如下供你参考。

完整代码

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import ToolMessage
from langchain_core.tools import InjectedToolCallId, tool
from typing_extensions import TypedDict

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.types import Command, interrupt



class State(TypedDict):
    messages: Annotated[list, add_messages]
    name: str
    birthday: str


@tool
def human_assistance(
    name: str, birthday: str, tool_call_id: Annotated[str, InjectedToolCallId]
) -> str:
    """Request assistance from a human."""
    human_response = interrupt(
        {
            "question": "Is this correct?",
            "name": name,
            "birthday": birthday,
        },
    )
    if human_response.get("correct", "").lower().startswith("y"):
        verified_name = name
        verified_birthday = birthday
        response = "Correct"
    else:
        verified_name = human_response.get("name", name)
        verified_birthday = human_response.get("birthday", birthday)
        response = f"Made a correction: {human_response}"

    state_update = {
        "name": verified_name,
        "birthday": verified_birthday,
        "messages": [ToolMessage(response, tool_call_id=tool_call_id)],
    }
    return Command(update=state_update)


tool = TavilySearchResults(max_results=2)
tools = [tool, human_assistance]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    message = llm_with_tools.invoke(state["messages"])
    assert(len(message.tool_calls) <= 1)
    return {"messages": [message]}


graph_builder = StateGraph(State)
graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

memory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory)
API Reference: TavilySearchResults | ToolMessage | InjectedToolCallId | tool

第6部分:时光回溯

在典型的聊天机器人工作流程中,用户会与机器人进行一次或多次交互以完成某项任务。在前面的章节中,我们了解了如何添加记忆和引入人工干预,以便对图状态进行检查点保存并控制未来的回复。

但如果你想让用户从之前的回复开始“分支”,去探索另一种结果,该怎么办呢?或者,如果你希望用户能够“倒回”助手的工作,以纠正一些错误或尝试不同的策略(这在自主软件工程师等应用中很常见),又该如何处理呢?

你可以利用 LangGraph 内置的“时光回溯”功能来实现上述两种体验以及更多功能。

在本节中,你将通过使用图的 get_state_history 方法获取检查点来“倒回”你的图。然后,你可以在这个之前的时间点恢复执行。

为此,让我们使用第3部分中带有工具的简单聊天机器人:

from typing import Annotated

from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage
from typing_extensions import TypedDict

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition


class State(TypedDict):
    messages: Annotated[list, add_messages]


graph_builder = StateGraph(State)


tool = TavilySearchResults(max_results=2)
tools = [tool]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    return {"messages": [llm_with_tools.invoke(state["messages"])]}


graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

memory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory)

API Reference: TavilySearchResults | BaseMessage

让我们让我们的图执行几步操作。每一步都会在其状态历史中进行检查点记录:

config = {"configurable": {"thread_id": "1"}}
events = graph.stream(
    {
        "messages": [
            {
                "role": "user",
                "content": (
                    "I'm learning LangGraph. "
                    "Could you do some research on it for me?"
                ),
            },
        ],
    },
    config,
    stream_mode="values",
)
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================ Human Message =================================

I'm learning LangGraph. Could you do some research on it for me?
================================== Ai Message ==================================

[{'text': "Certainly! I'd be happy to research LangGraph for you. To get the most up-to-date and accurate information, I'll use the Tavily search engine to look this up. Let me do that for you now.", 'type': 'text'}, {'id': 'toolu_01BscbfJJB9EWJFqGrN6E54e', 'input': {'query': 'LangGraph latest information and features'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Tool Calls:
  tavily_search_results_json (toolu_01BscbfJJB9EWJFqGrN6E54e)
 Call ID: toolu_01BscbfJJB9EWJFqGrN6E54e
  Args:
    query: LangGraph latest information and features
================================= Tool Message =================================
Name: tavily_search_results_json

[{"url": "https://blockchain.news/news/langchain-new-features-upcoming-events-update", "content": "LangChain, a leading platform in the AI development space, has released its latest updates, showcasing new use cases and enhancements across its ecosystem. According to the LangChain Blog, the updates cover advancements in LangGraph Cloud, LangSmith's self-improving evaluators, and revamped documentation for LangGraph."}, {"url": "https://blog.langchain.dev/langgraph-platform-announce/", "content": "With these learnings under our belt, we decided to couple some of our latest offerings under LangGraph Platform. LangGraph Platform today includes LangGraph Server, LangGraph Studio, plus the CLI and SDK. ... we added features in LangGraph Server to deliver on a few key value areas. Below, we'll focus on these aspects of LangGraph Platform."}]
================================== Ai Message ==================================

Thank you for your patience. I've found some recent information about LangGraph for you. Let me summarize the key points:

1. LangGraph is part of the LangChain ecosystem, which is a leading platform in AI development.

2. Recent updates and features of LangGraph include:

   a. LangGraph Cloud: This seems to be a cloud-based version of LangGraph, though specific details weren't provided in the search results.

   b. LangGraph Platform: This is a newly introduced concept that combines several offerings:
      - LangGraph Server
      - LangGraph Studio
      - CLI (Command Line Interface)
      - SDK (Software Development Kit)

3. LangGraph Server: This component has received new features to enhance its value proposition, though the specific features weren't detailed in the search results.

4. LangGraph Studio: This appears to be a new tool in the LangGraph ecosystem, likely providing a graphical interface for working with LangGraph.

5. Documentation: The LangGraph documentation has been revamped, which should make it easier for learners like yourself to understand and use the tool.

6. Integration with LangSmith: While not directly part of LangGraph, LangSmith (another tool in the LangChain ecosystem) now features self-improving evaluators, which might be relevant if you're using LangGraph as part of a larger LangChain project.

As you're learning LangGraph, it would be beneficial to:

1. Check out the official LangChain documentation, especially the newly revamped LangGraph sections.
2. Explore the different components of the LangGraph Platform (Server, Studio, CLI, and SDK) to see which best fits your learning needs.
3. Keep an eye on LangGraph Cloud developments, as cloud-based solutions often provide an easier starting point for learners.
4. Consider how LangGraph fits into the broader LangChain ecosystem, especially its interaction with tools like LangSmith.

Is there any specific aspect of LangGraph you'd like to know more about? I'd be happy to do a more focused search on particular features or use cases.

events = graph.stream(
    {
        "messages": [
            {
                "role": "user",
                "content": (
                    "Ya that's helpful. Maybe I'll "
                    "build an autonomous agent with it!"
                ),
            },
        ],
    },
    config,
    stream_mode="values",
)
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================ Human Message =================================

Ya that's helpful. Maybe I'll build an autonomous agent with it!
================================== Ai Message ==================================

[{'text': "That's an exciting idea! Building an autonomous agent with LangGraph is indeed a great application of this technology. LangGraph is particularly well-suited for creating complex, multi-step AI workflows, which is perfect for autonomous agents. Let me gather some more specific information about using LangGraph for building autonomous agents.", 'type': 'text'}, {'id': 'toolu_01QWNHhUaeeWcGXvA4eHT7Zo', 'input': {'query': 'Building autonomous agents with LangGraph examples and tutorials'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Tool Calls:
  tavily_search_results_json (toolu_01QWNHhUaeeWcGXvA4eHT7Zo)
 Call ID: toolu_01QWNHhUaeeWcGXvA4eHT7Zo
  Args:
    query: Building autonomous agents with LangGraph examples and tutorials
================================= Tool Message =================================
Name: tavily_search_results_json

[{"url": "https://towardsdatascience.com/building-autonomous-multi-tool-agents-with-gemini-2-0-and-langgraph-ad3d7bd5e79d", "content": "Building Autonomous Multi-Tool Agents with Gemini 2.0 and LangGraph | by Youness Mansar | Jan, 2025 | Towards Data Science Building Autonomous Multi-Tool Agents with Gemini 2.0 and LangGraph A practical tutorial with full code examples for building and running multi-tool agents Towards Data Science LLMs are remarkable — they can memorize vast amounts of information, answer general knowledge questions, write code, generate stories, and even fix your grammar. In this tutorial, we are going to build a simple LLM agent that is equipped with four tools that it can use to answer a user’s question. This Agent will have the following specifications: Follow Published in Towards Data Science --------------------------------- Your home for data science and AI. Follow Follow Follow"}, {"url": "https://github.com/anmolaman20/Tools_and_Agents", "content": "GitHub - anmolaman20/Tools_and_Agents: This repository provides resources for building AI agents using Langchain and Langgraph. This repository provides resources for building AI agents using Langchain and Langgraph. This repository provides resources for building AI agents using Langchain and Langgraph. This repository serves as a comprehensive guide for building AI-powered agents using Langchain and Langgraph. It provides hands-on examples, practical tutorials, and resources for developers and AI enthusiasts to master building intelligent systems and workflows. AI Agent Development: Gain insights into creating intelligent systems that think, reason, and adapt in real time. This repository is ideal for AI practitioners, developers exploring language models, or anyone interested in building intelligent systems. This repository provides resources for building AI agents using Langchain and Langgraph."}]
================================== Ai Message ==================================

Great idea! Building an autonomous agent with LangGraph is definitely an exciting project. Based on the latest information I've found, here are some insights and tips for building autonomous agents with LangGraph:

1. Multi-Tool Agents: LangGraph is particularly well-suited for creating autonomous agents that can use multiple tools. This allows your agent to have a diverse set of capabilities and choose the right tool for each task.

2. Integration with Large Language Models (LLMs): You can combine LangGraph with powerful LLMs like Gemini 2.0 to create more intelligent and capable agents. The LLM can serve as the "brain" of your agent, making decisions and generating responses.

3. Workflow Management: LangGraph excels at managing complex, multi-step AI workflows. This is crucial for autonomous agents that need to break down tasks into smaller steps and execute them in the right order.

4. Practical Tutorials Available: There are tutorials available that provide full code examples for building and running multi-tool agents. These can be incredibly helpful as you start your project.

5. Langchain Integration: LangGraph is often used in conjunction with Langchain. This combination provides a powerful framework for building AI agents, offering features like memory management, tool integration, and prompt management.

6. GitHub Resources: There are repositories available (like the one by anmolaman20) that provide comprehensive resources for building AI agents using Langchain and LangGraph. These can be valuable references as you develop your agent.

7. Real-time Adaptation: LangGraph allows you to create agents that can think, reason, and adapt in real-time, which is crucial for truly autonomous behavior.

8. Customization: You can equip your agent with specific tools tailored to your use case. For example, you might include tools for web searching, data analysis, or interacting with specific APIs.

To get started with your autonomous agent project:

1. Familiarize yourself with LangGraph's documentation and basic concepts.
2. Look into tutorials that specifically deal with building autonomous agents, like the one mentioned from Towards Data Science.
3. Decide on the specific capabilities you want your agent to have and identify the tools it will need.
4. Start with a simple agent and gradually add complexity as you become more comfortable with the framework.
5. Experiment with different LLMs to find the one that works best for your use case.
6. Pay attention to how you structure the agent's decision-making process and workflow.
7. Don't forget to implement proper error handling and safety measures, especially if your agent will be interacting with external systems or making important decisions.

Building an autonomous agent is an iterative process, so be prepared to refine and improve your agent over time. Good luck with your project! If you need any more specific information as you progress, feel free to ask.
既然我们已经让智能体迈出了几步,我们就可以 replay 完整的状态历史记录,以查看所发生的一切。

to_replay = None
for state in graph.get_state_history(config):
    print("Num Messages: ", len(state.values["messages"]), "Next: ", state.next)
    print("-" * 80)
    if len(state.values["messages"]) == 6:
        # We are somewhat arbitrarily selecting a specific state based on the number of chat messages in the state.
        to_replay = state
Num Messages:  8 Next:  ()
--------------------------------------------------------------------------------
Num Messages:  7 Next:  ('chatbot',)
--------------------------------------------------------------------------------
Num Messages:  6 Next:  ('tools',)
--------------------------------------------------------------------------------
Num Messages:  5 Next:  ('chatbot',)
--------------------------------------------------------------------------------
Num Messages:  4 Next:  ('__start__',)
--------------------------------------------------------------------------------
Num Messages:  4 Next:  ()
--------------------------------------------------------------------------------
Num Messages:  3 Next:  ('chatbot',)
--------------------------------------------------------------------------------
Num Messages:  2 Next:  ('tools',)
--------------------------------------------------------------------------------
Num Messages:  1 Next:  ('chatbot',)
--------------------------------------------------------------------------------
Num Messages:  0 Next:  ('__start__',)
--------------------------------------------------------------------------------
请注意,图的每一步都会保存检查点。这会**跨越调用**,因此你可以回溯整个线程的历史记录。我们选择了 to_replay 作为恢复的状态。这是上述第二次图调用中 chatbot 节点之后的状态。

从这一点恢复应该接下来调用**动作**节点。

print(to_replay.next)
print(to_replay.config)
('tools',)
{'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1efd43e3-0c1f-6c4e-8006-891877d65740'}}
注意,检查点的配置文件(to_replay.config)包含一个 checkpoint_id 时间戳。提供这个 checkpoint_id 值会告知 LangGraph 的检查点管理器从该时间点 加载 状态。下面让我们来试一试:

# The `checkpoint_id` in the `to_replay.config` corresponds to a state we've persisted to our checkpointer.
for event in graph.stream(None, to_replay.config, stream_mode="values"):
    if "messages" in event:
        event["messages"][-1].pretty_print()
================================== Ai Message ==================================

[{'text': "That's an exciting idea! Building an autonomous agent with LangGraph is indeed a great application of this technology. LangGraph is particularly well-suited for creating complex, multi-step AI workflows, which is perfect for autonomous agents. Let me gather some more specific information about using LangGraph for building autonomous agents.", 'type': 'text'}, {'id': 'toolu_01QWNHhUaeeWcGXvA4eHT7Zo', 'input': {'query': 'Building autonomous agents with LangGraph examples and tutorials'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Tool Calls:
  tavily_search_results_json (toolu_01QWNHhUaeeWcGXvA4eHT7Zo)
 Call ID: toolu_01QWNHhUaeeWcGXvA4eHT7Zo
  Args:
    query: Building autonomous agents with LangGraph examples and tutorials
================================= Tool Message =================================
Name: tavily_search_results_json

[{"url": "https://towardsdatascience.com/building-autonomous-multi-tool-agents-with-gemini-2-0-and-langgraph-ad3d7bd5e79d", "content": "Building Autonomous Multi-Tool Agents with Gemini 2.0 and LangGraph | by Youness Mansar | Jan, 2025 | Towards Data Science Building Autonomous Multi-Tool Agents with Gemini 2.0 and LangGraph A practical tutorial with full code examples for building and running multi-tool agents Towards Data Science LLMs are remarkable — they can memorize vast amounts of information, answer general knowledge questions, write code, generate stories, and even fix your grammar. In this tutorial, we are going to build a simple LLM agent that is equipped with four tools that it can use to answer a user’s question. This Agent will have the following specifications: Follow Published in Towards Data Science --------------------------------- Your home for data science and AI. Follow Follow Follow"}, {"url": "https://github.com/anmolaman20/Tools_and_Agents", "content": "GitHub - anmolaman20/Tools_and_Agents: This repository provides resources for building AI agents using Langchain and Langgraph. This repository provides resources for building AI agents using Langchain and Langgraph. This repository provides resources for building AI agents using Langchain and Langgraph. This repository serves as a comprehensive guide for building AI-powered agents using Langchain and Langgraph. It provides hands-on examples, practical tutorials, and resources for developers and AI enthusiasts to master building intelligent systems and workflows. AI Agent Development: Gain insights into creating intelligent systems that think, reason, and adapt in real time. This repository is ideal for AI practitioners, developers exploring language models, or anyone interested in building intelligent systems. This repository provides resources for building AI agents using Langchain and Langgraph."}]
================================== Ai Message ==================================

Great idea! Building an autonomous agent with LangGraph is indeed an excellent way to apply and deepen your understanding of the technology. Based on the search results, I can provide you with some insights and resources to help you get started:

1. Multi-Tool Agents:
   LangGraph is well-suited for building autonomous agents that can use multiple tools. This allows your agent to have a variety of capabilities and choose the appropriate tool based on the task at hand.

2. Integration with Large Language Models (LLMs):
   There's a tutorial that specifically mentions using Gemini 2.0 (Google's LLM) with LangGraph to build autonomous agents. This suggests that LangGraph can be integrated with various LLMs, giving you flexibility in choosing the language model that best fits your needs.

3. Practical Tutorials:
   There are tutorials available that provide full code examples for building and running multi-tool agents. These can be invaluable as you start your project, giving you a concrete starting point and demonstrating best practices.

4. GitHub Resources:
   There's a GitHub repository (github.com/anmolaman20/Tools_and_Agents) that provides resources for building AI agents using both Langchain and Langgraph. This could be a great resource for code examples, tutorials, and understanding how LangGraph fits into the broader LangChain ecosystem.

5. Real-Time Adaptation:
   The resources mention creating intelligent systems that can think, reason, and adapt in real-time. This is a key feature of advanced autonomous agents and something you can aim for in your project.

6. Diverse Applications:
   The materials suggest that these techniques can be applied to various tasks, from answering questions to potentially more complex decision-making processes.

To get started with your autonomous agent project using LangGraph, you might want to:

1. Review the tutorials mentioned, especially those with full code examples.
2. Explore the GitHub repository for hands-on examples and resources.
3. Decide on the specific tasks or capabilities you want your agent to have.
4. Choose an LLM to integrate with LangGraph (like GPT, Gemini, or others).
5. Start with a simple agent that uses one or two tools, then gradually expand its capabilities.
6. Implement decision-making logic to help your agent choose between different tools or actions.
7. Test your agent thoroughly with various inputs and scenarios to ensure robust performance.

Remember, building an autonomous agent is an iterative process. Start simple and gradually increase complexity as you become more comfortable with LangGraph and its capabilities.

Would you like more information on any specific aspect of building your autonomous agent with LangGraph?
请注意,图从 **action** 节点恢复执行。你可以判断出情况确实如此,因为上面打印的第一个值是我们搜索引擎工具的响应。

恭喜你! 你现在已经在 LangGraph 中使用了时光回溯检查点遍历。能够回退并探索其他路径,为调试、实验和交互式应用开辟了无限可能。

下一步

通过探索部署和高级功能,进一步开启你的旅程:

服务器快速入门

LangGraph 云服务

LangGraph 框架

LangGraph 平台

利用以下资源拓展你的知识:

Comments