使用本地LLM的修正RAG(CRAG)¶
修正RAG(CRAG)是一种RAG策略,它包含了对检索到的文档进行自我反思/自我评分的功能。
该论文遵循以下一般流程:
- 如果至少有一份文档超过了
相关性
阈值,则继续生成 - 如果所有文档都低于
相关性
阈值,或者评分器不确定,则使用网络搜索来补充检索 - 在生成之前,它会执行搜索或检索文档的知识精炼
- 这将文档划分为
知识条
- 它对每个条进行评分,并过滤掉不相关的条
我们将使用LangGraph从头开始实现其中一些想法:
- 如果任何文档不相关,我们将用网络搜索补充检索。
- 我们将跳过知识精炼步骤,但这可以作为节点重新添加,如果需要的话。
- 我们将使用Tavily Search进行网络搜索。
环境搭建¶
我们将使用Ollama来访问本地的LLM:
- 下载 Ollama 应用。
- 拉取你选择的模型,例如:
ollama pull llama3
我们将使用Tavily进行网页搜索。
我们将使用Nomic本地嵌入或可选的OpenAI嵌入的向量存储。
让我们安装所需的包并设置我们的API密钥:
%%capture --no-stderr
%pip install -U langchain_community tiktoken langchainhub scikit-learn langchain langgraph tavily-python nomic[local] langchain-nomic langchain_openai
import getpass
import os
def _set_env(key: str):
if key not in os.environ:
os.environ[key] = getpass.getpass(f"{key}:")
_set_env("OPENAI_API_KEY")
_set_env("TAVILY_API_KEY")
为LangGraph开发设置LangSmith
注册LangSmith,可以快速发现并解决您的LangGraph项目中的问题,提高项目性能。LangSmith允许您使用跟踪数据来调试、测试和监控使用LangGraph构建的LLM应用程序——更多关于如何开始的信息,请参阅这里。
大型语言模型¶
您可以从Ollama LLMs中选择。
创建索引¶
让我们为3篇博客文章创建索引。
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import SKLearnVectorStore
from langchain_nomic.embeddings import NomicEmbeddings # local
from langchain_openai import OpenAIEmbeddings # api
# List of URLs to load documents from
urls = [
"https://lilianweng.github.io/posts/2023-06-23-agent/",
"https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
"https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/",
]
# Load documents from the URLs
docs = [WebBaseLoader(url).load() for url in urls]
docs_list = [item for sublist in docs for item in sublist]
# Initialize a text splitter with specified chunk size and overlap
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=250, chunk_overlap=0
)
# Split the documents into chunks
doc_splits = text_splitter.split_documents(docs_list)
# Embedding
"""
embedding=NomicEmbeddings(
model="nomic-embed-text-v1.5",
inference_mode="local",
)
"""
embedding = OpenAIEmbeddings()
# Add the document chunks to the "vector store"
vectorstore = SKLearnVectorStore.from_documents(
documents=doc_splits,
embedding=embedding,
)
retriever = vectorstore.as_retriever(k=4)
API Reference: RecursiveCharacterTextSplitter | WebBaseLoader | SKLearnVectorStore | NomicEmbeddings | OpenAIEmbeddings
定义工具¶
### Retrieval Grader
from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import JsonOutputParser
from langchain_mistralai.chat_models import ChatMistralAI
# LLM
llm = ChatOllama(model=local_llm, format="json", temperature=0)
# Prompt
prompt = PromptTemplate(
template="""You are a teacher grading a quiz. You will be given:
1/ a QUESTION
2/ A FACT provided by the student
You are grading RELEVANCE RECALL:
A score of 1 means that ANY of the statements in the FACT are relevant to the QUESTION.
A score of 0 means that NONE of the statements in the FACT are relevant to the QUESTION.
1 is the highest (best) score. 0 is the lowest score you can give.
Explain your reasoning in a step-by-step manner. Ensure your reasoning and conclusion are correct.
Avoid simply stating the correct answer at the outset.
Question: {question} \n
Fact: \n\n {documents} \n\n
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. \n
Provide the binary score as a JSON with a single key 'score' and no premable or explanation.
""",
input_variables=["question", "documents"],
)
retrieval_grader = prompt | llm | JsonOutputParser()
question = "agent memory"
docs = retriever.invoke(question)
doc_txt = docs[1].page_content
print(retrieval_grader.invoke({"question": question, "documents": doc_txt}))
API Reference: PromptTemplate | ChatOllama | JsonOutputParser
### Generate
from langchain_core.output_parsers import StrOutputParser
# Prompt
prompt = PromptTemplate(
template="""You are an assistant for question-answering tasks.
Use the following documents to answer the question.
If you don't know the answer, just say that you don't know.
Use three sentences maximum and keep the answer concise:
Question: {question}
Documents: {documents}
Answer:
""",
input_variables=["question", "documents"],
)
# LLM
llm = ChatOllama(model=local_llm, temperature=0)
# Chain
rag_chain = prompt | llm | StrOutputParser()
# Run
generation = rag_chain.invoke({"documents": docs, "question": question})
print(generation)
API Reference: StrOutputParser
The document mentions "memory stream" which is a long-term memory module that records a comprehensive list of agents' experience in natural language. It also discusses short-term memory and long-term memory, with the latter providing the agent with the capability to retain and recall information over extended periods. Additionally, it mentions planning and reflection mechanisms that enable agents to behave conditioned on past experience.
### Search
from langchain_community.tools.tavily_search import TavilySearchResults
web_search_tool = TavilySearchResults(k=3)
API Reference: TavilySearchResults
创建图形¶
在这里,我们将明确定义大部分的控制流,仅使用大语言模型(LLM)来定义一个单一的分支点,该分支点在评分之后进行定义。
from typing import List
from typing_extensions import TypedDict
from IPython.display import Image, display
from langchain.schema import Document
from langgraph.graph import START, END, StateGraph
class GraphState(TypedDict):
"""
Represents the state of our graph.
Attributes:
question: question
generation: LLM generation
search: whether to add search
documents: list of documents
"""
question: str
generation: str
search: str
documents: List[str]
steps: List[str]
def retrieve(state):
"""
Retrieve documents
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, documents, that contains retrieved documents
"""
question = state["question"]
documents = retriever.invoke(question)
steps = state["steps"]
steps.append("retrieve_documents")
return {"documents": documents, "question": question, "steps": steps}
def generate(state):
"""
Generate answer
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation, that contains LLM generation
"""
question = state["question"]
documents = state["documents"]
generation = rag_chain.invoke({"documents": documents, "question": question})
steps = state["steps"]
steps.append("generate_answer")
return {
"documents": documents,
"question": question,
"generation": generation,
"steps": steps,
}
def grade_documents(state):
"""
Determines whether the retrieved documents are relevant to the question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates documents key with only filtered relevant documents
"""
question = state["question"]
documents = state["documents"]
steps = state["steps"]
steps.append("grade_document_retrieval")
filtered_docs = []
search = "No"
for d in documents:
score = retrieval_grader.invoke(
{"question": question, "documents": d.page_content}
)
grade = score["score"]
if grade == "yes":
filtered_docs.append(d)
else:
search = "Yes"
continue
return {
"documents": filtered_docs,
"question": question,
"search": search,
"steps": steps,
}
def web_search(state):
"""
Web search based on the re-phrased question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates documents key with appended web results
"""
question = state["question"]
documents = state.get("documents", [])
steps = state["steps"]
steps.append("web_search")
web_results = web_search_tool.invoke({"query": question})
documents.extend(
[
Document(page_content=d["content"], metadata={"url": d["url"]})
for d in web_results
]
)
return {"documents": documents, "question": question, "steps": steps}
def decide_to_generate(state):
"""
Determines whether to generate an answer, or re-generate a question.
Args:
state (dict): The current graph state
Returns:
str: Binary decision for next node to call
"""
search = state["search"]
if search == "Yes":
return "search"
else:
return "generate"
# Graph
workflow = StateGraph(GraphState)
# Define the nodes
workflow.add_node("retrieve", retrieve) # retrieve
workflow.add_node("grade_documents", grade_documents) # grade documents
workflow.add_node("generate", generate) # generatae
workflow.add_node("web_search", web_search) # web search
# Build graph
workflow.add_edge(START, "retrieve")
workflow.add_edge("retrieve", "grade_documents")
workflow.add_conditional_edges(
"grade_documents",
decide_to_generate,
{
"search": "web_search",
"generate": "generate",
},
)
workflow.add_edge("web_search", "generate")
workflow.add_edge("generate", END)
custom_graph = workflow.compile()
display(Image(custom_graph.get_graph(xray=True).draw_mermaid_png()))
API Reference: Document | START | END | StateGraph
import uuid
def predict_custom_agent_local_answer(example: dict):
config = {"configurable": {"thread_id": str(uuid.uuid4())}}
state_dict = custom_graph.invoke(
{"question": example["input"], "steps": []}, config
)
return {"response": state_dict["generation"], "steps": state_dict["steps"]}
example = {"input": "What are the types of agent memory?"}
response = predict_custom_agent_local_answer(example)
response
{'response': 'According to the documents, there are two types of agent memory:\n\n* Short-term memory (STM): This is a data structure that holds information temporarily and allows the agent to process it when needed.\n* Long-term memory (LTM): This provides the agent with the capability to retain and recall information over extended periods.\n\nThese types of memories allow the agent to learn, reason, and make decisions.',
'steps': ['retrieve_documents',
'grade_document_retrieval',
'web_search',
'generate_answer']}
追踪:
https://smith.langchain.com/public/88e7579e-2571-4cf6-98d2-1f9ce3359967/r
评估¶
现在我们定义了两种不同的代理架构,它们大致做了相同的事情!
我们可以对其进行评估。请参阅我们的概念指南以了解代理评估的背景。
响应¶
首先,我们可以评估代理在一组问答对上的表现。
我们将创建一个数据集并将其保存在LangSmith中。
from langsmith import Client
client = Client()
# Create a dataset
examples = [
(
"How does the ReAct agent use self-reflection? ",
"ReAct integrates reasoning and acting, performing actions - such tools like Wikipedia search API - and then observing / reasoning about the tool outputs.",
),
(
"What are the types of biases that can arise with few-shot prompting?",
"The biases that can arise with few-shot prompting include (1) Majority label bias, (2) Recency bias, and (3) Common token bias.",
),
(
"What are five types of adversarial attacks?",
"Five types of adversarial attacks are (1) Token manipulation, (2) Gradient based attack, (3) Jailbreak prompting, (4) Human red-teaming, (5) Model red-teaming.",
),
(
"Who did the Chicago Bears draft first in the 2024 NFL draft”?",
"The Chicago Bears drafted Caleb Williams first in the 2024 NFL draft.",
),
("Who won the 2024 NBA finals?", "The Boston Celtics on the 2024 NBA finals"),
]
# Save it
dataset_name = "Corrective RAG Agent Testing"
if not client.has_dataset(dataset_name=dataset_name):
dataset = client.create_dataset(dataset_name=dataset_name)
inputs, outputs = zip(
*[({"input": text}, {"output": label}) for text, label in examples]
)
client.create_examples(inputs=inputs, outputs=outputs, dataset_id=dataset.id)
现在,我们将使用LLM作为评分器
来比较两个代理的响应与我们的参考答案。
这里是默认的提示,我们可以使用它。
我们将使用gpt-4o
作为我们的LLM评分器。
from langchain import hub
from langchain_openai import ChatOpenAI
# Grade prompt
grade_prompt_answer_accuracy = hub.pull("langchain-ai/rag-answer-vs-reference")
def answer_evaluator(run, example) -> dict:
"""
A simple evaluator for RAG answer accuracy
"""
# Get the question, the ground truth reference answer, RAG chain answer prediction
input_question = example.inputs["input"]
reference = example.outputs["output"]
prediction = run.outputs["response"]
# Define an LLM grader
llm = ChatOpenAI(model="gpt-4o", temperature=0)
answer_grader = grade_prompt_answer_accuracy | llm
# Run evaluator
score = answer_grader.invoke(
{
"question": input_question,
"correct_answer": reference,
"student_answer": prediction,
}
)
score = score["Score"]
return {"key": "answer_v_reference_score", "score": score}
API Reference: ChatOpenAI
轨迹¶
其次,我们可以评估每个代理所做出的工具调用列表,这些调用相对于预期的轨迹。
这评估了我们的代理所采取的具体推理路径!
from langsmith.schemas import Example, Run
# Reasoning traces that we expect the agents to take
expected_trajectory_1 = [
"retrieve_documents",
"grade_document_retrieval",
"web_search",
"generate_answer",
]
expected_trajectory_2 = [
"retrieve_documents",
"grade_document_retrieval",
"generate_answer",
]
def find_tool_calls_react(messages):
"""
Find all tool calls in the messages returned
"""
tool_calls = [
tc["name"] for m in messages["messages"] for tc in getattr(m, "tool_calls", [])
]
return tool_calls
def check_trajectory_react(root_run: Run, example: Example) -> dict:
"""
Check if all expected tools are called in exact order and without any additional tool calls.
"""
messages = root_run.outputs["messages"]
tool_calls = find_tool_calls_react(messages)
print(f"Tool calls ReAct agent: {tool_calls}")
if tool_calls == expected_trajectory_1 or tool_calls == expected_trajectory_2:
score = 1
else:
score = 0
return {"score": int(score), "key": "tool_calls_in_exact_order"}
def check_trajectory_custom(root_run: Run, example: Example) -> dict:
"""
Check if all expected tools are called in exact order and without any additional tool calls.
"""
tool_calls = root_run.outputs["steps"]
print(f"Tool calls custom agent: {tool_calls}")
if tool_calls == expected_trajectory_1 or tool_calls == expected_trajectory_2:
score = 1
else:
score = 0
return {"score": int(score), "key": "tool_calls_in_exact_order"}
from langsmith.evaluation import evaluate
experiment_prefix = f"custom-agent-{model_tested}"
experiment_results = evaluate(
predict_custom_agent_local_answer,
data=dataset_name,
evaluators=[answer_evaluator, check_trajectory_custom],
experiment_prefix=experiment_prefix + "-answer-and-tool-use",
num_repetitions=3,
max_concurrency=1, # Use when running locally
metadata={"version": metadata},
)
View the evaluation results for experiment: 'custom-agent-llama3-8b-answer-and-tool-use-d6006159' at:
https://smith.langchain.com/o/1fa8b1f4-fcb9-4072-9aa9-983e35ad61b8/datasets/a8b9273b-ca33-4e2f-9f69-9bbc37f6f51b/compare?selectedSessions=83c60822-ef22-43e8-ac85-4488af279c6f
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
GPT-4o
和Llama-3-70b
进行了基准对比。
本地自定义代理在工具调用可靠性方面表现良好:它遵循预期的推理轨迹。
然而,使用自定义代理实现的模型在答案准确性方面落后于较大的模型。